- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
The area enclosed between the concentric circles is $770\ cm^2$. If the radius of the outer circle is $21\ cm$, find the radius of the inner circle.
Given:
The area enclosed between the concentric circles is $770\ cm^2$.
The radius of the outer circle is $21\ cm$.
To do:
We have to find the radius of the inner circle.
Solution:
Let $r$ be the radius of the inner circle.
Area of a circle of radius $r=\pi r^2$
According to the question,
$\pi (21)^{2}-\pi r^{2}=770$
$\frac{22}{7}(21)^{2}-\frac{22}{7} r^{2}=770$
$\frac{22}{7} \times 441-\frac{22}{7} r^{2}=770$
$\Rightarrow 1386-\frac{22}{7} r^{2}=770$
$\Rightarrow \frac{22}{7} r^{2}=1386-770$
$\Rightarrow \frac{22}{7} r^{2}=616$
$\Rightarrow r^{2}=\frac{616 \times 7}{22}$
$\Rightarrow r^{2}=28 \times 7$
$\Rightarrow r^{2}=196$
$\Rightarrow r^{2}=(14)^{2}$
$\Rightarrow r=14\ cm$
The radius of the inner circle is $14\ cm$.
Advertisements