Suppose $a,\ b,\ c$ are in AP, then prove that $b=\frac{a+c}{2}$.
Given: $a,\ b,\ c$ are in A.P.
To do: To prove that $b=\frac{a+c}{2}$.
Solution:
$\because a,\ b,\ c$ are in A.P.
$\Rightarrow b-a=c-b$
$\Rightarrow b+b=a+c$
$\Rightarrow 2b=a+c$
$\Rightarrow b=\frac{a+c}{2}$
Hence proved.
- Related Articles
- Prove that \( \sin \left(C+\frac{A+B}{2}\right)=\sin \frac{A+B}{2} \)
- If $2^{a}=3^{b}=6^{c}$ then show that $ c=\frac{a b}{a+b} $
- If the angles $A,\ B,\ C$ of a $\vartriangle ABC$ are in A.P., then prove that $b^2=a^2+c^2-ac$.
- If \( A, B, C \), are the interior angles of a triangle \( A B C \), prove that\( \tan \left(\frac{C+A}{2}\right)=\cot \frac{B}{2} \)
- If \( A, B, C \), are the interior angles of a triangle \( A B C \), prove that\( \sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2} \)
- If the roots of the equation $a(b-c) x^2+b(c-a) x+c(a-b) =0$ are equal, then prove that $b(a+c) =2ac$.
- In $\vartriangle ABC$, if $cot \frac{A}{2},\ cot \frac{B}{2},\ cot \frac{C}{2}$ are in A.P. Then show that $a,\ b,\ c$ are in A.P.  
- Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+c a+a^{2}}=1 \)
- Prove that:\( \left(\frac{x^{a}}{x^{-b}}\right)^{a^{2}-a b+b^{2}} \times\left(\frac{x^{b}}{x^{-c}}\right)^{b^{2}-b c+c^{2}} \times\left(\frac{x^{c}}{x^{-a}}\right)^{c^{2}-c a+a^{2}}=1 \)
- Prove that \( (a-b)^{2}, a^{2}+b^{2} \) and \( (a+b)^{2} \) are three consecutive terms of an AP.
- If $A, B$ and $C$ are interior angles of a triangle $ABC$, then show that: $sin\ (\frac{B+C}{2}) = cos\ \frac{A}{2}$
- Given that $sin\ \theta = \frac{a}{b}$, then $cos\ \theta$ is equal to(A) \( \frac{b}{\sqrt{b^{2}-a^{2}}} \)(B) \( \frac{b}{a} \)(C) \( \frac{\sqrt{b^{2}-a^{2}}}{b} \)(D) \( \frac{a}{\sqrt{b^{2}-a^{2}}} \)
- If the roots of the equation $(b-c)x^2+(c-a)x+(a-b)=0$ are equal, then prove that $2b=a+c$.
- Prove that\( \frac{a+b+c}{a^{-1} b^{-1}+b^{-1} c^{-1}+c^{-1} a^{-1}}=a b c \)
- If \( A, B, C \) are the interior angles of a \( \triangle A B C \), show that:\( \tan \frac{B+C}{2}=\cot \frac{A}{2} \)
Kickstart Your Career
Get certified by completing the course
Get Started