State which of the following are triangles.
$ \overline{A B}=7 \mathrm{~cm}, \overline{B C}=8 \mathrm{~cm}, \quad \overline{A C}=7 \mathrm{~cm} $
Given:
\( \overline{A B}=7 \mathrm{~cm}, \overline{B C}=8 \mathrm{~cm}, \overline{A C}=7 \mathrm{~cm} \)
To do:
We have to find if the given measurements form a triangle.
Solution:
In the given triangle,
\( \overline{A B}=7 \mathrm{~cm}, \overline{B C}=8 \mathrm{~cm}, \overline{A C}=7 \mathrm{~cm} \)
Let us draw a rough figure,

As we can see from the figure, $\triangle ABC$ is an isoceles triangle.
- Related Articles
- Given \( \overline{\mathrm{AB}} \) of length \( 7.3 \mathrm{~cm} \) and \( \overline{\mathrm{CD}} \) of length \( 3.4 \mathrm{~cm} \), construct a line segment \( \overline{X Y} \) such that the length of \( \overline{X Y} \) is equal to the difference between the lengths of \( \overline{\mathrm{AB}} \) and \( \overline{\mathrm{CD}} \). Verify by measurement.
- Given \( \overline{\mathrm{AB}} \) of length \( 3.9 \mathrm{~cm} \), construct \( \overline{\mathrm{PQ}} \) such that the length of \( \overline{\mathrm{PQ}} \) is twice that of \( \overline{\mathrm{AB}} \). Verify by measurement.(Hint : Construct \( \overline{\mathrm{PX}} \) such that length of \( \overline{\mathrm{PX}}= \) length of \( \overline{\mathrm{AB}} \); then cut off \( \overline{\mathrm{XQ}} \) such that \( \overline{\mathrm{XQ}} \) also has the length of \( \overline{\mathrm{AB}} \).)"\n
- With \( \overline{\mathrm{PQ}} \) of length \( 6.1 \mathrm{~cm} \) as diameter, draw a circle.
- Draw a circle with centre \( \mathrm{C} \) and radius \( 3.4 \mathrm{~cm} \). Draw any chord \( \overline{\mathrm{AB}} \). Construct the perpendicular bisector of \( \overline{\mathrm{AB}} \) and examine if it passes through \( \mathrm{C} \).
- Draw \( \overline{A B} \) of length \( 7.3 \mathrm{~cm} \) and find its axis of symmetry.
- Draw any line segment \( \overline{\mathrm{PQ}} \). Without measuring \( \overline{\mathrm{PQ}} \), construct a copy of \( \overline{\mathrm{PQ}} \).
- If \( \mathrm{B} \) is the mid point of \( \overline{\mathrm{AC}} \) and \( \mathrm{C} \) is the mid point of \( \overline{\mathrm{BD}} \), where \( \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D} \) lie on a straight line, say why \( \mathrm{AB}=\mathrm{CD} \)?
- Let \( \overline{\mathrm{PQ}} \) be the perpendicular to the line segment \( \overline{\mathrm{XY}} \). Let \( \overline{\mathrm{PQ}} \) and \( \overline{\mathrm{XY}} \) intersect in the point \( \mathrm{A} \). What is the measure of \( \angle \mathrm{PAY} \) ?
- Draw \( \overline{\mathrm{AB}} \) of length \( 7.3 \mathrm{~cm} \) and find its axis of symmetry.
- Draw a rough figure and label suitably in each of the following cases:(a) Point \( P \) lies on \( \overline{\mathrm{AB}} \).(b) \( \overline{\mathrm{XY}} \) and \( \overline{\mathrm{PQ}} \) intersect at \( \mathrm{M} \).(c) Line \( l \) contains \( \bar{E} \) and \( \bar{F} \) but not \( \bar{D} \).(d) \( \overline{\mathrm{OP}} \) and \( \overline{\mathrm{OQ}} \) meet at \( O \).
- Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{B}=75^{\circ} \) and \( \mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm} \).
- Draw a line segment \( A B=5.5 \mathrm{cm} \). Find a point \( P \) on it such that \( \overline{A P}=\frac{2}{3} \overline{P B} \).
- If \( \mathrm{A}, \mathrm{B}, \mathrm{C} \) are three points on a line such that \( \mathrm{AB}=5 \mathrm{~cm}, \mathrm{BC}=3 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), which one of them lies between the other two?
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} . \quad \) If \( \quad \mathrm{AB}+\mathrm{BC}=12 \mathrm{~cm} \) \( \mathrm{PQ}+\mathrm{QR}=15 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), find \( \mathrm{PR} \).
- Given some line segment \( \overline{\mathrm{AB}} \), whose length you do not know, construct \( \overline{\mathrm{PQ}} \) such that the length of \( \overline{\mathrm{PQ}} \) is twice that of \( \overline{\mathrm{AB}} \).
Kickstart Your Career
Get certified by completing the course
Get Started