- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following equations and verify the answer:
$\frac{15(2\ -\ x)\ -\ 5(x\ +\ 6)}{1\ -\ 3x} \ =\ 10 $
Given: $\frac{15(2\ -\ x)\ -\ 5(x\ +\ 6)}{1\ -\ 3x} \ =\ 10 $
To do: Here we have to solve the expression and then verify the answer.
Solution:
$\frac{15(2\ -\ x)\ -\ 5(x\ +\ 6)}{1\ -\ 3x} \ =\ 10 $
After cross multiplication:
$15(2\ -\ x)\ -\ 5(x\ +\ 6)\ =\ 10( 1\ -\ 3x)$
$30\ -\ 15x\ -\ 5x\ -\ 30\ =\ 10\ -\ 30x$
$30x\ -\ 15x\ -\ 5x\ =\ 10$
$10x\ =\ 10$
$x\ =\ \frac{10}{10}$
$\mathbf{x\ =\ 1}$
So, the value of x is = 1.
Verifying:
Put the value of x in the equation (1),
$\frac{15(2\ -\ 1)\ -\ 5(1\ +\ 6)}{1\ -\ 3( 1)} \ =\ 10$
$\frac{15(1)\ -\ 5(7)}{1\ -\ 3} \ =\ 10$
$\frac{15\ -\ 35}{-2} \ =\ 10$
$\frac{-\ 20}{-\ 2} \ =\ 10$
$\mathbf{10\ =\ 10}$
Hence Verified.
Advertisements