- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Solve the following equation :$5 x-25=0$
Given :
The given equation is $5x-25 = 0$
To do :
We need to find the value of x.
Solution :
$5x-25 = 0$
$5x = 25$ (Transposing 25)
$x = \frac{25}{5}$
$x = 5$
The value of x is 5.
- Related Articles
- Solve the following equation$x^{2}r^{2}+2r(2q-p) x+(p-2q)^{2}=0$
- Find the zero of the polynomial in each of the following cases:(i) \( p(x)=x+5 \)(ii) \( p(x)=x-5 \)(iii) \( p(x)=2 x+5 \)(iv) \( p(x)=3 x-2 \)(v) \( p(x)=3 x \)(vi) \( p(x)=a x, a ≠ 0 \)(vii) \( p(x)=c x+d, c ≠ 0, c, d \) are real numbers.
- If p, q are real and p≠q, then show that the roots of the equation $(p-q)x^2+5(p+q)x-2(p-q)=0$ are real and unequal.
- Find the value of p for which the quadratic equation $(p + 1)x^2 - 6(p + 1)x + 3(p + 9) = 0, p ≠ -1$ has equal roots. Hence, find the roots of the equation.
- Find \( p(0), p(1) \) and \( p(2) \) for each of the following polynomials:(i) \( p(y)=y^{2}-y+1 \)(ii) \( p(t)=2+t+2 t^{2}-t^{3} \)(iii) \( p(x)=x^{3} \)(iv) \( p(x)=(x-1)(x+1) \)
- Solve the following equations:$4=5(p-2)$.
- Solve the following:$34-5(p-1) = -4$.
- What is an equation $4=5(p-2)-4=5(p-2)$
- Subtract \( 4 p^{2} q-3 p q+5 p q^{2}-8 p+7 q-10 \) from \( 18-3 p-11 q+5 p q-2 p q^{2}+5 p^{2} q \).
- Solve the following:$10 p = 100$
- Solve the following equations:$(a).\ 4=5(p-2)$$(b).\ -4=5(p-2)$$(c).\ 16=4+3(t+2)$$(d).\ 4+5(p-1)=34$$(e).\ 0=16+4(m-6)$
- Solve \( 2 p^{2} q^{2}-3 p q+4,5+7 p q-3 p^{2} q^{2} \).
- Solve the following:$2(p+3) = 14$.
- Verify whether the following are zeroes of the polynomial, indicated against them.(i) \( p(x)=3 x+1, x=-\frac{1}{3} \)(ii) \( p(x)=5 x-\pi, x=\frac{4}{5} \)(iii) \( p(x)=x^{2}-1, x=1,-1 \)(iv) \( p(x)=(x+1)(x-2), x=-1,2 \)(v) \( p(x)=x^{2}, x=0 \)(vi) \( p(x)=l x+m, x=-\frac{m}{l} \)(vii) \( p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \)(viii) \( p(x)=2 x+1, x=\frac{1}{2} \)
- Simplify and verify the result for $p=1$.$4 p^{3} \times 3 p^{4} \times( -p^{5})$"\n

Advertisements