Solve:$ \frac{3 x}{5}+4+x-2=\frac{\frac{3 x}{5} \times x}{2} $
Given:
\( \frac{3 x}{5}+4+x-2=\frac{\frac{3 x}{5} \times x}{2} \)
To do:
We have to solve the given equation.
Solution:
$\frac{3 x}{5}+4+x-2=\frac{\frac{3 x}{5} \times x}{2}$
$\frac{3 x}{5}+x+2=\frac{3 x^2}{10}$
$\frac{3 x+5x+10}{5}=\frac{3 x^2}{10}$
$8x+10=\frac{3 x^2}{2}$
$2(8x+10)=3x^2$
$3x^2-16x-20=0$
$x=\frac{-(-16) \pm \sqrt{(-16)^2-4(3)(-20)}}{2(3)}$
$x=\frac{16 \pm \sqrt{256+240}}{6}$
$x=\frac{16 \pm \sqrt{496}}{6}$
$x=\frac{16 \pm \sqrt{16\times31}}{6}$
$x=\frac{16 \pm 4\sqrt{31}}{6}$
$x=\frac{8 \pm 2\sqrt{31}}{3}$
$x=\frac{8 + 2\sqrt{31}}{3}$ or $x=\frac{8 - 2\sqrt{31}}{3}$.
- Related Articles
- Solve: $\frac{4 x-5}{6 x+3}=\frac{2 x-5}{3 x-2}$.
- Take away:\( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+\frac{3}{5} x+\frac{1}{4} \)
- Solve: $\frac{2}{5} x-2=-\frac{3}{5} x+5$.
- Solve: $\frac{4 x+2}{5 x-3}=-3$.
- Solve the following quadratic equation by factorization: $\frac{x-2}{x-3}+\frac{x-4}{x-5}=\frac{10}{3}, x ≠3, 5$
- Solve for $x$:$\frac{x-1}{x-2}+\frac{x-3}{x-4}=3\frac{1}{3}, x≠2, 4$
- Solve: \( \frac{x+5}{2}=1+\frac{2 x-1}{3} \).
- Add the following algebraic expressions(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- Solve:$\frac{3 x}{2}-\frac{5 y}{3}=-2$$\frac{x}{3}+\frac{y}{2}=\frac{13}{6}$
- Take away:(i) \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+ \) \( \frac{3}{5} x+\frac{1}{4} \)(ii) \( \frac{5 a^{2}}{2}+\frac{3 a^{3}}{2}+\frac{a}{3}-\frac{6}{5} \) from \( \frac{1}{3} a^{3}-\frac{3}{4} a^{2}- \) \( \frac{5}{2} \)(iii) \( \frac{7}{4} x^{3}+\frac{3}{5} x^{2}+\frac{1}{2} x+\frac{9}{2} \) from \( \frac{7}{2}-\frac{x}{3}- \) \( \frac{x^{2}}{5} \)(iv) \( \frac{y^{3}}{3}+\frac{7}{3} y^{2}+\frac{1}{2} y+\frac{1}{2} \) from \( \frac{1}{3}-\frac{5}{3} y^{2} \)(v) \( \frac{2}{3} a c-\frac{5}{7} a b+\frac{2}{3} b c \) from \( \frac{3}{2} a b-\frac{7}{4} a c- \) \( \frac{5}{6} b c \)
- Solve for $x$:\( 3 x-\frac{x-2}{3}=4-\frac{x-1}{4} \)
- Solve the following quadratic equation by factorization: $\frac{5+x}{5-x}-\frac{5-x}{5+x}=3\frac{3}{4}, x ≠5, -5$
- Subtract:(i) $-5xy$ from $12xy$(ii) $2a^2$ from $-7a^2$(iii) \( 2 a-b \) from \( 3 a-5 b \)(iv) \( 2 x^{3}-4 x^{2}+3 x+5 \) from \( 4 x^{3}+x^{2}+x+6 \)(v) \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \) from \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \)(vi) \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \) from \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \)(vii) \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \) from \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \)(viii) \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \) from \( \frac{3}{5} b c-\frac{4}{5} a c \)
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- Solve for $x$:\( \frac{3 x-2}{3}+\frac{2 x+3}{2}=x+\frac{7}{6} \)
Kickstart Your Career
Get certified by completing the course
Get Started