- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Simplify the following:$ \frac{6(8)^{n+1}+16(2)^{3 n-2}}{10(2)^{3 n+1}-7(8)^{n}} $
Given:
\( \frac{6(8)^{n+1}+16(2)^{3 n-2}}{10(2)^{3 n+1}-7(8)^{n}} \)
To do:
We have to simplify the given expression.
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
$\frac{6(8)^{n+1}+16(2)^{3 n-2}}{10(2)^{3 n+1}-7(8)^{n}}=\frac{6(2^{3})^{n+1}+16(2)^{3 n-2}}{10(2)^{3 n+1}-7(2^{3})^{n}}$
$=\frac{6 \times 2^{3 n+3}+16 \times 2^{3 n-2}}{10\times2^{3 n+1}-7 \times 2^{3 n}}$
$=\frac{2^{3 n}(6 \times 2^{3}+16 \times 2^{-2})}{2^{3 n}(10 \times 2^{1}-7)}$
$=\frac{48+16 \times \frac{1}{4}}{20-7}$
$=\frac{48+4}{13}$
$=\frac{52}{13}$
$=4$
Therefore, $\frac{6(8)^{n+1}+16(2)^{3 n-2}}{10(2)^{3 n+1}-7(8)^{n}}=4$.
Advertisements