- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Simplify the following.
a) $ (l^{2}-m^{2})(2 l+m)-m^{3} $
b) $ (p+q+r)(p-q+r)+p q-q r $
Given:
a) \( (l^{2}-m^{2})(2 l+m)-m^{3} \)
b) \( (p+q+r)(p-q+r)+p q-q r \)
To do:
We have to simplify the given expressions.
Solutions:
We know that,
$(a+b)(c+d)=a(c+d)+b(c+d)$
Therefore,
a) $(l^{2}-m^{2})(2 l+m)-m^{3}=l^2(2l+m)-m^2(2l+m)-m^3$
$=2l^{2+1}+ml^2-2m^2l-m^{2+1}-m^{3}$
$=2l^.3+ml^2-2m^2l-2m^3$
b) $(p+q+r)(p-q+r)+p q-q r=p(p-q+r)+q(p-q+r)+r(p-q+r)+pq-qr$
$=p^2-pq+pr+pq-q^2+qr+pr-qr+r^2+pq-qr$
$=p^2-q^2+r^2+pq+2pr-qr$
- Related Articles
- If $p,\ q,\ r$ are in A.P., then show that $p^2( p+r),\ q^2( r+p),\ r^2( p+q)$ are also in A.P.
- Simplify: $\frac{(q+\frac{1}{p})^m(q-\frac{1}{p})^m}{(p+\frac{1}{q})^m(p-\frac{1}{q})^m}$
- If $p=-2,\ q=-1$ and $r=3$, find the value of $p^{2}+q^{2}-r^{2}$.
- If $p=-2,\ q=-1$ and $r=3$, find the value of $2 p^{2}-q^{2}+3 r^{2}$.
- Solve \( 2 p^{2} q^{2}-3 p q+4,5+7 p q-3 p^{2} q^{2} \).
- Subtract \( 4 p^{2} q-3 p q+5 p q^{2}-8 p+7 q-10 \) from \( 18-3 p-11 q+5 p q-2 p q^{2}+5 p^{2} q \).
- If $p=-2,\ q=-1$ and $r=3$, find the value of $p-q-r$.
- Factorise \( 16(2 p-3 q)^{2}-4(2 p-3 q) \).
- In \( \Delta P Q R \), right-angled at \( Q, P Q=3 \mathrm{~cm} \) and \( P R=6 \mathrm{~cm} \). Determine \( \angle P \) and \( \angle R \).
- Find the following product.\( \left(\frac{4}{3} p q^{2}\right) \times\left(\frac{-1}{4} p^{2} r\right) \times\left(16 p^{2} q^{2} r^{2}\right) \)
- If $p=-2,\ q=-1$ and $r=3$, find the value of $3p^{2}q+5pq^{2}+2pqr$.
- Subtract the following algebraic identities:$3 p^{2} q-3$ from $9 p^{2}-9 p^{2} q$.
- In a triangle \( P Q R, N \) is a point on \( P R \) such that \( Q N \perp P R \). If \( P N \). \( N R=Q^{2} \), prove that \( \angle \mathrm{PQR}=90^{\circ} \).
- If $a = xy^{p-1}, b = xy^{q-1}$ and $c = xy^{r-1}$, prove that $a^{q-r} b^{r-p} c^{p-q} = 1$.
- In the figure, \( O Q: P Q=3: 4 \) and perimeter of \( \Delta P O Q=60 \mathrm{~cm} \). Determine \( P Q, Q R \) and \( O P \)."\n

Advertisements