- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Simplify:$ \sqrt{\left(\frac{x+1}{2}\right)^{2}-\left(\frac{x-1}{2}\right)^{2}} $
Given:
\( \sqrt{\left(\frac{x+1}{2}\right)^{2}-\left(\frac{x-1}{2}\right)^{2}} \)
To do:
We have to simplify \( \sqrt{\left(\frac{x+1}{2}\right)^{2}-\left(\frac{x-1}{2}\right)^{2}} \).
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
Therefore,
$\sqrt{(\frac{x+1}{2})^{2}-(\frac{x-1}{2})^{2}}=\sqrt{(\frac{(x+1)^2}{2^2}-\frac{(x-1)^2}{2^2}}$
$=\sqrt{\frac{x^2+2\times x \times1+1^2}{4}-\frac{x^2-2\times x \times1+1^2}{4}}$
$=\sqrt{\frac{x^2+2x+1-x^2+2x-1}{4}}$
$=\sqrt{\frac{4x}{4}}$
$=\sqrt{x}$
Advertisements