- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Simplify:
(i) $ 2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} $
(ii) $ \left(\frac{1}{3^{3}}\right)^{7} $
(iii) $ \frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} $
(iv) $ 7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}} $
To do:
We have to simplify
(i) \( 2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}} \)
(ii) \( \left(\frac{1}{3^{3}}\right)^{7} \)
(iii) \( \frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}} \)
(iv) \( 7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}} \)
Solution:
We know that,
$(a^m)^n=(a)^{mn}$
$a^m \times a^n=a^{m+n}$
Therefore,
(i) $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}=(2)^{\frac{2}{3}+\frac{1}{5}}$
$=(2)^{\frac{2\times5+1\times3}{15}}$ (LCM of 3 and 5 is 15)
$=(2)^{\frac{10+3}{15}}$
$=(2)^{\frac{13}{15}}$
Hence $2^{\frac{2}{3}} \cdot 2^{\frac{1}{5}}=(2)^{\frac{13}{15}}$
(ii) $(\frac{1}{3^{3}})^{7}=(3^{-3})^{7}$ [Since $\frac{1}{a^m}=a^{-m}$]
$=(3)^{-3\times7}$
$=(3)^{-21}$
Hence $(\frac{1}{3^{3}})^{7}=(3)^{-21}$
(iii) $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}=(11)^{\frac{1}{2}-\frac{1}{4}}$ [Since $\frac{a^m}{a^n}=a^{m-n}$]
$=(11)^{\frac{1\times2-1}{4}}$ (LCM of 2 and 4 is 4)
$=(11)^{\frac{2-1}{4}}$
$=(11)^{\frac{1}{4}}$
Hence $\frac{11^{\frac{1}{2}}}{11^{\frac{1}{4}}}=(11)^{\frac{1}{4}}$
(iv) $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}=(7\times8)^{\frac{1}{2}}$ [Since $a^m \times b^m = (a\times b)^m$]
$=(56)^{\frac{1}{2}}$
Hence $7^{\frac{1}{2}} \cdot 8^{\frac{1}{2}}=(56)^{\frac{1}{2}}$.