Show that the bisectors of the base angles of a triangle cannot enclose a right angle in any case.


To do:

 We have to show that the bisectors of the base angles of a triangle cannot enclose a right angle in any case.​

Solution:

Let in a right-angled triangle $ABC$, $\angle A$ be the vertex angle and $OB$ and $OC$ be the bisectors of $\angle B$ and $\angle C$ respectively.

$\angle A+\angle B+\angle C=180^{\circ}$

Dividing both sides by 2, we get,

$\frac{1}{2} \angle A+\frac{1}{2} \angle B+\frac{1}{2} \angle C=180^{\circ}$

$\frac{1}{2} \angle A+\angle O B C+\angle O B C=90^{\circ}$

$\angle O B C+\angle O C B=90^{\circ}-\frac{1}{2}A$

In $\triangle B O C$,

$\angle B O C+\angle O B C+\angle O C B=180^{\circ}$

$\angle B O C+90^{\circ}-\frac{1}{2} \angle A=180^{\circ}$

$\angle B O C=90^{\circ}+\frac{1}{2} \angle A$

This implies,

$\angle BOC > 90^{\circ}$

Hence, the bisectors of the base angles of a triangle cannot enclose a right angle in any case.

Tutorialspoint
Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

53 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements