Show that $(a – b)^2, (a^2 + b^2)$ and $(a + b)^2$ are in A.P.
Given:
Given terms are $(a−b)^2,\ (a^2+b^2),\ (a+b)^2$.
To do:
We have to show that $(a−b)^2,\ (a^2+b^2),\ (a+b)^2$ are in A.P.
Solution:
If the given terms are in A.P., then their common difference should be equal.
$( a^2+b^2)−( a−b)^2=(a^2+b^2)−(a^2+b^2−2ab)$
$=2ab$
$( a+b)^2−( a^2+b^2)=a^2+b^2+2ab−a^2−b^2$
$=2ab$
Therefore,
$( a^2+b^2)−( a−b)^2=( a+b)^2−( a^2+b^2)$
Hence, the given terms are in A.P.
- Related Articles
- Show that $(a−b)^2,\ (a^2+b^2),\ (a+b)^2$ are in A.P.
- In $\vartriangle ABC$, if $cot \frac{A}{2},\ cot \frac{B}{2},\ cot \frac{C}{2}$ are in A.P. Then show that $a,\ b,\ c$ are in A.P.  
- Prove that \( (a-b)^{2}, a^{2}+b^{2} \) and \( (a+b)^{2} \) are three consecutive terms of an AP.
- If \( x=\frac{\sqrt{a^{2}+b^{2}}+\sqrt{a^{2}-b^{2}}}{\sqrt{a^{2}+b^{2}}-\sqrt{a^{2}-b^{2}}} \), then prove that \( b^{2} x^{2}-2 a^{2} x+b^{2}=0 \).
- Show that the equation $2(a^2+b^2)x^2+2(a+b)x+1=0$ has no real roots, when a≠b.
- Let $a$ and $b$ be positive integers. Show that $\sqrt{2}$ is always between $\frac{2}{b}$ and $\frac{a+2 b}{a+b}$.
- If the angles $A,\ B,\ C$ of a $\vartriangle ABC$ are in A.P., then prove that $b^2=a^2+c^2-ac$.
- Prove that:\( \sin ^{2} A \cos ^{2} B-\cos ^{2} A \sin ^{2} B=\sin ^{2} A-\sin ^{2} B \)
- Prove that:\( \tan ^{2} A \sec ^{2} B-\sec ^{2} A \tan ^{2} B=\tan ^{2} A-\tan ^{2} B \)
- If \( a+b=5 \) and \( a b=2 \), find the value of(a) \( (a+b)^{2} \)(b) \( a^{2}+b^{2} \)(c) \( (a-b)^{2} \)
- If $a=2$ and $b=-2$ find the value of $(i)$. $a^2+b^2$$(ii)$. $a^2+ab+b^2$$(iii)$. $a^{2}-b^2$
- Prove that:\( \cot ^{2} A \operatorname{cosec}^{2} B-\cot ^{2} B \operatorname{cosec}^{2} A=\cot ^{2} A-\cot ^{2} B \)
- If \( a+b=5 \) and \( a b=2 \), find the value of(a) \( (a+b)^{2} \)(b) \( a^{2}+b^{2} \)
- If \( a=2 \) and \( b=3 \), find the value of\( a+b \)\( a^{2}+a b \)\( 2 a-3 b \)\( 5 a^{2}-2 a b \)
- Evaluate the following algebraic identify:$(a+b)(a-b)(a^2-b^2)(a^2+b^2)$.
Kickstart Your Career
Get certified by completing the course
Get Started