- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove that $ \sin \left(C+\frac{A+B}{2}\right)=\sin \frac{A+B}{2} $
We know that,
$\sin(90^o+\theta)=\cos \theta$
$\sin(90^o-\theta)=\cos \theta$
In a triangle $A+B+C=180^o$
$\Rightarrow \frac{A+B+C}{2}=\frac{180^o}{2}=90^o$.....(i)
$\Rightarrow \frac{A+B}{2}=90^o-\frac{C}{2}$
Therefore,
LHS $=\sin (C+\frac{A+B}{2})$
$=\sin(\frac{A+B+2C}{2}$
$=\sin(\frac{A+B+C}{2}+\frac{C}{2})$
$=\sin(90^o+\frac{C}{2})$ [From (i)]
$=\cos \frac{C}{2}$
RHS $=\sin \frac{A+B}{2}$
$=\sin(90^o-\frac{C}{2})$ [From (ii)]
$=\cos \frac{C}{2}$
LHS $=$ RHS
Hence proved.
Advertisements