Prove that:$ \frac{\cos \theta-\sin \theta+1}{\cos \theta+\sin \theta-1} =\operatorname{cosec} \theta+\cot \theta $


To do:

We have to prove that \( \frac{\cos \theta-\sin \theta+1}{\cos \theta+\sin \theta-1} =\operatorname{cosec} \theta+\cot \theta \).

Solution:

We know that,

$\sin^2 A+\cos^2 A=1$

$\operatorname{cosec}^2 A-\cot^2 A=1$

$\sec^2 A-\tan^2 A=1$

$\cot A=\frac{\cos A}{\sin A}$

$\tan A=\frac{\sin A}{\cos A}$

$\operatorname{cosec} A=\frac{1}{\sin A}$

$\sec A=\frac{1}{\cos A}$

Therefore,

$\frac{\cos \theta-\sin \theta+1}{\cos \theta+\sin \theta-1}=\frac{\frac{\cos \theta}{\sin \theta}-\frac{\sin \theta}{\sin \theta}+\frac{1}{\sin \theta}}{\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\sin \theta}-\frac{1}{\sin \theta}}$    (Divide each term by $\sin \theta$)

$=\frac{\cot \theta-1+\operatorname{cosec} \theta}{\cot \theta+1-\operatorname{cosec} \theta}$

$=\frac{(\cot \theta+\operatorname{cosec} \theta-1)}{(\cot \theta-\operatorname{cosec} \theta+1)}$      

$=\frac{(\cot \theta+\operatorname{cosec} \theta-1)(\cot \theta+\operatorname{cosec} \theta)}{[(\cot \theta-\operatorname{cosec} \theta)+1](\cot \theta+\operatorname{cosec} \theta)}$               (Multiplying and dividing by $\cot \theta+\operatorname{cosec} \theta$)

$=\frac{(\cot \theta+\operatorname{cosec} \theta-1)(\cot \theta+\operatorname{cosec} \theta)}{(\cot \theta-\operatorname{cosec} \theta)(\cot \theta+\operatorname{cosec} \theta)+\cot \theta+\operatorname{cosec} \theta}$

$=\frac{(\cot \theta+\operatorname{cosec} \theta-1)(\cot \theta+\operatorname{cosec} \theta)}{\left(\cot ^{2} \theta-\operatorname{cosec}^{2} \theta\right)+\cot \theta+\operatorname{cosec} \theta}$

$=\frac{(\cot \theta+\operatorname{cosec} \theta-1)(\cot \theta+\operatorname{cosec} \theta)}{-1+\cot \theta+\operatorname{cosec} \theta}$

$=\frac{(\cot \theta+\operatorname{cosec} \theta-1)(\cot \theta+\operatorname{cosec} \theta)}{(\cot \theta+\operatorname{cosec} \theta-1)}$

$=\cot \theta+\operatorname{cosec} \theta$

$=\operatorname{cosec} \theta+\cot \theta$

Hence proved.   

Tutorialspoint
Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

203 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements