- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove that:$ 9^{\frac{3}{2}}-3 \times 5^{0}-\left(\frac{1}{81}\right)^{\frac{-1}{2}}=15 $
Given:
$9^{\frac{3}{2}}-3 \times 5^{0}-( \frac{1}{81})^{-\frac{1}{2}}=15$.
To do:
We have to prove that $9^{\frac{3}{2}}-3 \times 5^{0}-( \frac{1}{81})^{-\frac{1}{2}}=15$.
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
Therefore,
LHS $=9^{\frac{3}{2}}-3 \times 5^{0}-( \frac{1}{81})^{-\frac{1}{2}}$
$=( 3^2)^{\frac{3}{2}}-3 \times 1-( \frac{1}{3^4})^{-\frac{1}{2}}$
$=3^{2\times\frac{3}{2}}-3-( 3^{-4})^{-\frac{1}{2}}$
$=3^3-3-3^{-4\times-\frac{1}{2}}$
$=3^3-3-3^2$
$=27-3-9$
$=15$
$=$ RHS
Hence proved.
Advertisements