- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# Prove that $2-3\sqrt{5}$ is an irrational number.

**Given:**Number $2-3\sqrt{5}$

**To do:**To prove that the given number is an irrational number.

**Solution:**

Let us assume that $2-3\sqrt{5} =x$ and$\ x$ is a rational number.

$\therefore \ 2-x=3\sqrt{5} ,\ 2-x$ would also be a rational number.

$\therefore \frac{\ ( 2-x)}{3} =\frac{( 3\surd 5)}{3} =\sqrt{5}$

If x is a rational number then $2-x$ is also a rational number and $\frac{2-x}{3}$ also should be a rational number.

But here we find that $\therefore \frac{\ ( 2-x)}{3} =5\ $ and $\sqrt{5}$ can never be rational number.

Our assumption was wrong x to be a rational number.

Thus it has been proved that $2-3\sqrt{5}$ is an irrational number.

â€Š
Advertisements