- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Observe the following pattern:
$1^{3}=1$
$1^{3}+2^{3}=(1+2)^{2}$
$1^{3}+2^{3}+3^{3}=(1+2+3)^{2}$
Write the next three rows and calculate the value of $1^3 + 2^3 + 3^3 +…. + 9^3 + 10^3$ by the above pattern.
Given:
$1^{3}=1$
$1^{3}+2^{3}=(1+2)^{2}$
$1^{3}+2^{3}+3^{3}=(1+2+3)^{2}$
To do:
We have to write the next three rows and calculate the value of $1^3 +2^3 + 3^3 +…. + 9^3 + 10^3$ by the above pattern.
Solution:  
The next three terms of the given pattern are:
$1^{3}+2^{3}+3^{3}+4^{3}=(1+2+3+4)^{2}$
$1^{3}+2^{3}+3^{3}+4^{3}+5^{3} =(1+2+3+4+5)^{2}$
$1^{3}+2^{3}+3^{3}+4^{3}+5^{3}+6^{3}=(1+2+3+4+5+6)^{2}$
Therefore,
$1^{3}+2^{3}+3^{3}+\ldots .+9^{3}+10^{3}=(1+2+3+\ldots .+9+10)^{2}$
$=55^2$
$=3025$
Advertisements