$ \mathrm{ABC} $ and $ \mathrm{ADC} $ are two right triangles with common hypotenuse $ \mathrm{AC} $. Prove that $ \angle \mathrm{CAD}=\angle \mathrm{CBD} $.
Given:
\( \mathrm{ABC} \) and \( \mathrm{ADC} \) are two right triangles with common hypotenuse \( \mathrm{AC} \).
To do:
We have to prove that \( \angle \mathrm{CAD}=\angle \mathrm{CBD} \).
Solution:
We know that,
Angles in the same segment are equal.
This implies,
$\angle CBD=\angle CAD$
Hence proved.
Related Articles \( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
\( \mathrm{ABC} \) is an isosceles triangle with \( \mathrm{AB}=\mathrm{AC} \). Draw \( \mathrm{AP} \perp \mathrm{BC} \) to show that \( \angle \mathrm{B}=\angle \mathrm{C} \).
\( \mathrm{ABC} \) and \( \mathrm{DBC} \) are two isosceles triangles on the same base \( BC \) (see Fig. 7.33). Show that \( \angle \mathrm{ABD}=\angle \mathrm{ACD} \)."\n
In Fig. 7.21, \( \mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD} \) and \( \angle \mathrm{BAD}=\angle \mathrm{EAC} \). Show that \( \mathrm{BC}=\mathrm{DE} \)."\n
In Fig. 6.15, \( \angle \mathrm{PQR}=\angle \mathrm{PRQ} \), then prove that \( \angle \mathrm{PQS}=\angle \mathrm{PRT} \)"\n
Choose the correct answer from the given four options:If in triangles \( \mathrm{ABC} \) and \( \mathrm{DEF}, \frac{\mathrm{AB}}{\mathrm{DE}}=\frac{\mathrm{BC}}{\mathrm{FD}} \), then they will be similar, when(A) \( \angle \mathrm{B}=\angle \mathrm{E} \)(B) \( \angle \mathrm{A}=\angle \mathrm{D} \)(C) \( \angle \mathrm{B}=\angle \mathrm{D} \)(D) \( \angle \mathrm{A}=\angle \mathrm{F} \)
In \( \triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{AB}=12.5 \) and \( \mathrm{BC}=12 \). Find \( \mathrm{AC} \).
Name the types of following triangles:(a) Triangle with lengths of sides \( 7 \mathrm{~cm}, 8 \mathrm{~cm} \) and \( 9 \mathrm{~cm} \).(b) \( \triangle \mathrm{ABC} \) with \( \mathrm{AB}=8.7 \mathrm{~cm}, \mathrm{AC}=7 \mathrm{~cm} \) and \( \mathrm{BC}=6 \mathrm{~cm} \).(c) \( \triangle \mathrm{PQR} \) such that \( \mathrm{PQ}=\mathrm{QR}=\mathrm{PR}=5 \mathrm{~cm} \).(d) \( \triangle \mathrm{DEF} \) with \( \mathrm{m} \angle \mathrm{D}=90^{\circ} \)(e) \( \triangle \mathrm{XYZ} \) with \( \mathrm{m} \angle \mathrm{Y}=90^{\circ} \) and \( \mathrm{XY}=\mathrm{YZ} \).(f) \( \Delta \mathrm{LMN} \) with \( \mathrm{m} \angle \mathrm{L}=30^{\circ}, \mathrm{m} \angle \mathrm{M}=70^{\circ} \) and \( \mathrm{m} \angle \mathrm{N}=80^{\circ} \).
\( \triangle \mathrm{ABC} \) is an isosceles triangle in which \( \mathrm{AB}=\mathrm{AC} \). Side \( \mathrm{BA} \) is produced to \( \mathrm{D} \) such that \( \mathrm{AD}=\mathrm{AB} \) (see Fig. 7.34). Show that \( \angle \mathrm{BCD} \) is a right angle."\n
In an isosceles triangle \( \mathrm{ABC} \), with \( \mathrm{AB}=\mathrm{AC} \), the bisectors of \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \) intersect each other at \( O \). Join \( A \) to \( O \). Show that :(i) \( \mathrm{OB}=\mathrm{OC} \)(ii) \( \mathrm{AO} \) bisects \( \angle \mathrm{A} \)
\( \mathrm{ABCD} \) is a rhombus. Show that diagonal \( \mathrm{AC} \) bisects \( \angle \mathrm{A} \) as well as \( \angle \mathrm{C} \) and diagonal \( \mathrm{BD} \) bisects \( \angle \mathrm{B} \) as well as \( \angle \mathrm{D} \).
In figure below, if \( \angle \mathrm{ACB}=\angle \mathrm{CDA}, \mathrm{AC}=8 \mathrm{~cm} \) and \( \mathrm{AD}=3 \mathrm{~cm} \), find \( \mathrm{BD} \)."
Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{B}=75^{\circ} \) and \( \mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm} \).
Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{B}=45^{\circ} \) and \( \mathrm{AB}-\mathrm{AC}=3.5 \mathrm{~cm} \).
In the given figure, ABC and AMP are two right triangles, right angled at B and M respectively. Prove that:(i) \( \triangle \mathrm{ABC} \sim \triangle \mathrm{AMP} \)(ii) \( \frac{\mathrm{CA}}{\mathrm{PA}}=\frac{\mathrm{BC}}{\mathrm{MP}} \)"
Kickstart Your Career
Get certified by completing the course
Get Started