- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
It is given that
\[
63.63=m\left(21+\frac{n}{100}\right)
\]
Where $ m, n $ are positive integers and $ n<100 . $ Find the value of $ m+n $
Given that
$63.63=m(21+\frac{n}{100})$
where $(m, n)$ are positive integers and $n<100$.
To find the value of $( m+n)$
Solution:
We know that
$63.63\div3 = 21.21 = 21 + \frac{21}{100}$ or
$63.63 = 3(21 +\frac{21}{100})$
Comparing to
$63.63=m(21+\frac{n}{100})$
$m = 3$ and $n = 21$
So $m + n = 3 + 21 = 24$ or
So $(m + n) = 24$
- Related Articles
- Show that:\( \frac{\left(a+\frac{1}{b}\right)^{m} \times\left(a-\frac{1}{b}\right)^{n}}{\left(b+\frac{1}{a}\right)^{m} \times\left(b-\frac{1}{a}\right)^{n}}=\left(\frac{a}{b}\right)^{m+n} \)
- Find a positive number M such that gcd(N^M,N&M) is maximum in Python
- Find the numerical value of \( P: Q \) where \( \mathrm{P}=\left(\frac{x^{m}}{x^{n}}\right)^{m+n-l} \times\left(\frac{x^{n}}{x^{l}}\right)^{n+l-m} \times\left(\frac{x^{l}}{x^{m}}\right)^{l+m-n} \) and\( \mathrm{Q}=\left(x^{1 /(a-b)}\right)^{1 /(a-c)} \times\left(x^{1 /(b-c)}\right)^{1 /(b-a)} \times\left(x^{1 /(c-a)}\right)^{1 /(c-b)} \)where \( a, b, c \) being all different.A. \( 1: 2 \)B. \( 2: 1 \)C. \( 1: 1 \)D. None of these
- The value of \( \left[\left(1-\frac{1}{n+1}\right)+\left(1-\frac{2}{n+1}\right)+\ldots \ldots+\left(1-\frac{n}{n+1}\right)\right] \) is
- If $l, m, n$ are three lines such that $l \parallel m$ and $n \perp l$, prove that $n \perp m$.
- If $m$ and $n$ are the zeroes of the polynomial $3x^2+11x−4$, find the values of $\frac{m}{n}+\frac{n}{m}$
- Find the sum of n terms of the series\( \left(4-\frac{1}{n}\right)+\left(4-\frac{2}{n}\right)+\left(4-\frac{3}{n}\right)+\ldots . \)
- Add the following monomials:(i) \( 8 x y, 2 x y, 9 x y \)\( \left(iv{}\right)-40 m n,-30 m n, 18 m n \)
- Program to compare m^n and n^m
- Simplify:\( \sqrt[lm]{\frac{x^{l}}{x^{m}}} \times \sqrt[m n]{\frac{x^{m}}{x^{n}}} \times \sqrt[n l]{\frac{x^{n}}{x^{l}}} \)
- If \( a=x^{m+n} y^{l}, b=x^{n+l} y^{m} \) and \( c=x^{l+m} y^{n} \), prove that \( a^{m-n} b^{n-1} c^{l-m}=1 . \)
- Find n positive integers that satisfy the given equations in C++
- If $\frac{cos\alpha}{cos\beta}=m$ and $\frac{cos\alpha}{sin\beta}=n$, then show that $( m^{2}+n^{2})cos^{2}\beta=n^{2}$.
- If \( x=a^{m+n}, y=a^{n+1} \) and \( z=a^{l+m} \), prove that \( x^{m} y^{n} z^{l}=x^{n} y^{l} z^{m} \)
- Simplify each of the following products:\( (m+\frac{n}{7})^{3}(m-\frac{n}{7}) \)

Advertisements