In $ \triangle \mathrm{ABC}, \mathrm{AD} $ is the perpendicular bisector of $ \mathrm{BC} $ (see Fig. 7.30). Show that $ \triangle \mathrm{ABC} $ is an isosceles triangle in which $ \mathrm{AB}=\mathrm{AC} $. "
Given:
In $\triangle ABC, AD$ is the perpendicular bisector of $BC$.
To do:
We have to show that $\triangle ABC$ is an isosceles triangle in which $AB=AC$.
Solution:
Let us consider $\triangle ADB$ and$\triangle ADC$,
We know that,
According to Rule of Side-Angle-Side Congruence:
Triangles are said to be congruent if any pair of corresponding sides and their included angles are equal in both triangles.
Since $AD$ is the common side of both the triangles,
We get,
$AD=DA$
This implies,
$\angle ADB= \angle ADC$
Since $AD$ is a perpendicular bisector of $\triangle ABC$ we get,
$BD=CD$
Therefore,
$\triangle ADB \cong \triangle ADC$
We also know
From corresponding parts of congruent triangles: If two triangles are congruent, all of their corresponding sides must be equal.
Therefore,
$AB=AC$.
Related Articles \( \mathrm{ABC} \) is a triangle in which altitudes \( \mathrm{BE} \) and \( \mathrm{CF} \) to sides \( \mathrm{AC} \) and \( \mathrm{AB} \) are equal (see Fig. 7.32). Show that(i) \( \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF} \)(ii) \( \mathrm{AB}=\mathrm{AC} \), i.e., \( \mathrm{ABC} \) is an isosceles triangle."\n
\( \triangle \mathrm{ABC} \) is an isosceles triangle in which \( \mathrm{AB}=\mathrm{AC} \). Side \( \mathrm{BA} \) is produced to \( \mathrm{D} \) such that \( \mathrm{AD}=\mathrm{AB} \) (see Fig. 7.34). Show that \( \angle \mathrm{BCD} \) is a right angle."\n
\( \mathrm{AD} \) is an altitude of an isosceles triangle \( \mathrm{ABC} \) in which \( \mathrm{AB}=\mathrm{AC} \). Show that(i) ADbisects BC(ii) \( \mathrm{AD} \) bisects \( \angle \mathrm{A} \).
\( \mathrm{ABC} \) is an isosceles triangle with \( \mathrm{AB}=\mathrm{AC} \). Draw \( \mathrm{AP} \perp \mathrm{BC} \) to show that \( \angle \mathrm{B}=\angle \mathrm{C} \).
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=8, \mathrm{AC}=15 \) and \( \mathrm{AD}=8.5 \), find \( \mathrm{BC} \).
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=18 \mathrm{~cm} \). \( \mathrm{AC}=14 \mathrm{~cm} \) and \( \mathrm{AD}=14 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
In quadrilateral \( A C B D \),\( \mathrm{AC}=\mathrm{AD} \) and \( \mathrm{AB} \) bisects \( \angle \mathrm{A} \) (see Fig. 7.16). Show that \( \triangle \mathrm{ABC} \cong \triangle \mathrm{ABD} \).What can you say about \( \mathrm{BC} \) and \( \mathrm{BD} \) ?"64391"\n
Two sides \( \mathrm{AB} \) and \( \mathrm{BC} \) and median \( \mathrm{AM} \) of one triangle \( \mathrm{ABC} \) are respectively equal to sides \( \mathrm{PQ} \) and \( \mathrm{QR} \) and median \( \mathrm{PN} \) of \( \triangle \mathrm{PQR} \) (see Fig. 7.40). Show that:(i) \( \triangle \mathrm{ABM} \equiv \triangle \mathrm{PQN} \)(ii) \( \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR} \)"\n
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \). If \( \mathrm{AC}-\mathrm{BC}=4 \) and \( \mathrm{BC}-\mathrm{AB}=4 \), find all the three sides of \( \triangle \mathrm{ABC} \).
\( \mathrm{ABC} \) is an isosceles triangle in which altitudes \( \mathrm{BE} \) and \( \mathrm{CF} \) are drawn to equal sides \( \mathrm{AC} \) and \( \mathrm{AB} \) respectively (see Fig. 7.31). Show that these altitudes are equal."\n
In \( \triangle \mathrm{ABC}, \mathrm{M} \) and \( \mathrm{N} \) are the midpoints of \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively. If the area of \( \triangle \mathrm{ABC} \) is \( 90 \mathrm{~cm}^{2} \), find the area of \( \triangle \mathrm{AMN} \).
\( \triangle \mathrm{ABC} \) and \( \triangle \mathrm{DBC} \) are two isosceles triangles on the same base \( B C \) and vertices \( A \) and \( D \) are on the same side of \( \mathrm{BC} \) (see Fig. 7.39). If \( \mathrm{AD} \) is extended to intersect \( \mathrm{BC} \) at \( \mathrm{P} \), show that(i) \( \triangle \mathrm{ABD} \equiv \triangle \mathrm{ACD} \)(ii) \( \triangle \mathrm{ABP} \cong \triangle \mathrm{ACP} \)(iii) \( \mathrm{AP} \) bisects \( \angle \mathrm{A} \) as well as \( \angle \mathrm{D} \).(iv) AP is the perpendicular bisector of \( \mathrm{BC} \)."
In \( \triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{AB}=12.5 \) and \( \mathrm{BC}=12 \). Find \( \mathrm{AC} \).
In any triangle \( \mathrm{ABC} \), if the angle bisector of \( \angle \mathrm{A} \) and perpendicular bisector of \( \mathrm{BC} \) intersect, prove that they intersect on the circumcircle of the triangle \( \mathrm{ABC} \).
In \( \triangle \mathrm{ABC} \) and \( \triangle \mathrm{DEF}, \mathrm{AB}=\mathrm{DE}, \mathrm{AB} \| \mathrm{DE}, \mathrm{BC}=\mathrm{EF} \) and \( \mathrm{BC} \| EF \). Vertices \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) are joined to vertices D, E and F respectively (see below figure).Show that(i) quadrilateral ABED is a parallelogram(ii) quadrilateral \( \mathrm{BEFC} \) is a parallelogram(iii) \( \mathrm{AD} \| \mathrm{CF} \) and \( \mathrm{AD}=\mathrm{CF} \)(iv) quadrilateral ACFD is a parallelogram(v) \( \mathrm{AC}=\mathrm{DF} \)(vi) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF} \)."
Kickstart Your Career
Get certified by completing the course
Get Started