In $ \triangle \mathrm{ABC}, \mathrm{AD} $ is a median. If $ \mathrm{AB}=18 \mathrm{~cm} $. $ \mathrm{AC}=14 \mathrm{~cm} $ and $ \mathrm{AD}=14 \mathrm{~cm} $, find the perimeter of $ \triangle \mathrm{ABC} $.
Given:
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median.
\( \mathrm{AB}=18 \mathrm{~cm} \), \( \mathrm{AC}=14 \mathrm{~cm} \) and \( \mathrm{AD}=14 \mathrm{~cm} \)
To do:
We have to find the perimeter of \( \triangle \mathrm{ABC} \).
Solution:
We know that,
The length of the median to side BC $= \frac{1}{2}\sqrt{2AB^{2}+2AC^{2}-BC^{2}}$
Therefore,
$AD=\frac{1}{2}\sqrt{2AB^{2}+2AC^{2}-BC^{2}}$
$2(14)=\sqrt{2(18)^2+2(14)^2-BC^2}$
$(28)^2=2(324)+2(196)-BC^2$
$BC^2=648+392-784$
$BC^2=1040-784$
$BC^2=256$
$\Rightarrow BC=\sqrt{256}=16\ cm$
The perimeter of $\triangle \mathrm{ABC}=AB+BC+CA$
$=18+16+14$
$=48\ cm$
Related Articles In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=8, \mathrm{AC}=15 \) and \( \mathrm{AD}=8.5 \), find \( \mathrm{BC} \).
\( \Delta \mathrm{ABC} \sim \Delta \mathrm{XZY} \). If the perimeter of \( \triangle \mathrm{ABC} \) is \( 45 \mathrm{~cm} \), the perimeter of \( \triangle \mathrm{XYZ} \) is \( 30 \mathrm{~cm} \) and \( \mathrm{AB}=21 \mathrm{~cm} \), find \( \mathrm{XY} \).
If \( \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm} \) and \( \mathrm{FD}=12 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} . \quad \) If \( \quad \mathrm{AB}+\mathrm{BC}=12 \mathrm{~cm} \) \( \mathrm{PQ}+\mathrm{QR}=15 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), find \( \mathrm{PR} \).
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{ZYX} . \) If \( \mathrm{AB}=3 \mathrm{~cm}, \quad \mathrm{BC}=5 \mathrm{~cm} \), \( \mathrm{CA}=6 \mathrm{~cm} \) and \( \mathrm{XY}=6 \mathrm{~cm} \), find the perimeter of \( \Delta \mathrm{XYZ} \).
Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{B}=75^{\circ} \) and \( \mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm} \).
Construct a triangle \( \mathrm{ABC} \) in which \( \mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{B}=45^{\circ} \) and \( \mathrm{AB}-\mathrm{AC}=3.5 \mathrm{~cm} \).
In \( \triangle \mathrm{ABC}, \mathrm{M} \) and \( \mathrm{N} \) are the midpoints of \( \mathrm{AB} \) and \( \mathrm{AC} \) respectively. If the area of \( \triangle \mathrm{ABC} \) is \( 90 \mathrm{~cm}^{2} \), find the area of \( \triangle \mathrm{AMN} \).
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{EFD} \). If \( \mathrm{AB}: \mathrm{BC}: \mathrm{CA}=4: 3: 5 \) and the perimeter of \( \triangle \mathrm{DEF} \) is \( 36 \mathrm{~cm} \), find all the sides of \( \triangle \mathrm{DEF} \).
In figure below, \( \mathrm{ABCD} \) is a parallelogram, \( \mathrm{AE} \perp \mathrm{DC} \) and \( \mathrm{CF} \perp \mathrm{AD} \). If \( \mathrm{AB}=16 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm} \) and \( \mathrm{CF}=10 \mathrm{~cm} \), find \( \mathrm{AD} \)."\n
In \( \triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AM} \) is an altitude. If \( \mathrm{BM}=6 \) and \( \mathrm{CM}=2 \), find the perimeter of \( \triangle \mathrm{ABC} \).
Find the perimeter of a triangle with sides measuring \( 10 \mathrm{~cm}, 14 \mathrm{~cm} \) and \( 15 \mathrm{~cm} \).
In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=10 \) and \( \mathrm{CM}=5 \), find the perimeter of \( \triangle \mathrm{ABC} \).
In figure below, \( \mathrm{ABC} \) is a triangle right angled at \( \mathrm{B} \) and \( \mathrm{BD} \perp \mathrm{AC} \). If \( \mathrm{AD}=4 \mathrm{~cm} \), and \( C D=5 \mathrm{~cm} \), find \( B D \) and \( A B \)."
In figure below, if \( \angle \mathrm{ACB}=\angle \mathrm{CDA}, \mathrm{AC}=8 \mathrm{~cm} \) and \( \mathrm{AD}=3 \mathrm{~cm} \), find \( \mathrm{BD} \)."
Kickstart Your Career
Get certified by completing the course
Get Started