In $\triangle ABC$ and $\triangle DEF$, it is being given that: $AB = 5\ cm, BC = 4\ cm$ and $CA = 4.2\ cm; DE = 10\ cm, EF = 8\ cm$ and $FD = 8.4\ cm$. If $AL \perp BC$ and $DM \perp EF$, find $AL : DM$.
Given:
$AB = 5\ cm, BC = 4\ cm$ and $CA = 4.2\ cm; DE = 10\ cm, EF = 8\ cm$ and $FD = 8.4\ cm$.
$AL \perp BC$ and $DM \perp EF$. To do: We have to find $AL : DM$.
Solution:
In $\triangle ABC$ and $\triangle DEF$,
$\frac{AB}{DE}=\frac{5}{10}=\frac{1}{2}$
$\frac{AC}{DF}=\frac{4.2}{8.4}=\frac{1}{2}$
$\frac{BC}{EF}=\frac{4}{8}=\frac{1}{2}$
$\frac{AB}{DE}=\frac{AC}{DF}=\frac{BC}{EF}$
Therefore,
By SSS similarity,
$\triangle ABC \sim\ \triangle DEF$
This implies,
$\angle C=\angle F$
In $\triangle ALC$ and $\triangle DMF$,
$\angle ALC=\angle DMF=90^o$
$\angle C=\angle F$
Therefore,
$\triangle ALC \sim\ \triangle DMF$
This implies,
$\frac{AC}{DF}=\frac{AL}{DM}$
$\frac{AL}{DM}=\frac{1}{2}$
$AL:DM=1:2$.
Related Articles In a Parallelogram $ABCD, AB = 18\ cm, BC=12\ cm, AL \perp\ DC, AM \perp\ BC$ and $AL = 6.4\ cm$. Find the length of $AM$.
If $\vartriangle ABC \sim\vartriangle DEF$, $AB = 4\ cm,\ DE = 6\ cm,\ EF = 9\ cm$ and $FD = 12\ cm$, find the perimeter of $ABC$.
If \( \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm} \) and \( \mathrm{FD}=12 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
Construct a triangle $ABC$ such that $BC = 6\ cm, AB = 6\ cm$ and median $AD = 4\ cm$.
In $\triangle ABC$, AL and CM are the perpendiculars from the vertices A and C to BC and AB respectively. If AL and CM intersect at O, prove that: $\triangle OMA \sim OLC$.
In a $\triangle ABC, D, E$ and $F$ are respectively, the mid-points of $BC, CA$ and $AB$. If the lengths of sides $AB, BC$ and $CA$ are $7\ cm, 8\ cm$ and $9\ cm$, respectively, find the perimeter of $\triangle DEF$.
Triangles ABC and DEF are similar.If area of $(ΔABC)\ =\ 16\ cm^2$, area $(ΔDEF)\ =\ 25\ cm^2$ and $BC\ =\ 2.3\ cm$, find $EF$."\n
Let $∆ABC \sim ∆DEF$ and their areas be respectively $64\ cm^2$ and $121\ cm^2$. If $EF = 15.4\ cm$, find BC.
In a triangle ABC, DE is parallel to BC. If AB = 7.2 cm; AC = 9 cm; and AD = 1.8 cm; Find AE."\n
In figure below, we have $AB \parallel CD \parallel EF$. If $AB=6\ cm, CD=x\ cm, EF=10\ cm, BD=4\ cm$ and $DE=y\ cm$, calculate the values of $x$ and $y$."\n
In an isosceles triangle $ABC$, if $AB\ =\ AC\ =\ 13\ cm$ and the altitude from $A$ on $BC$ is $5\ cm$, find $BC$."\n
$ABC$ is a triangle, right-angled at $C$. If $AB=25\ cm$ and $AC=7\ cm$, find $BC$.
If $\vartriangle ABC\sim\vartriangle RPQ,\ AB=3\ cm,\ BC=5\ cm,\ AC=6\ cm,\ RP=6\ cm\ and\ PQ=10\ cm$, then find $QR$.
In a $Δ\ ABC$, $D$ and $E$ are points on $AB$ and $AC$ respectively, such that $DE\ ∥\ BC$. If $AD\ =\ 2.4\ cm$, $AE\ =\ 3.2\ cm$, $DE\ =\ 2\ cm$ and $BC\ =\ 5\ cm$. Find $BD$ and $CE$. "\n
In a $\triangle ABC, AB = 15\ cm, BC = 13\ cm$ and $AC = 14\ cm$. Find the area of $\triangle ABC$ and hence its altitude on $AC$.
Kickstart Your Career
Get certified by completing the course
Get Started