- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In the following, determine whether the given values are solutions of the given equation or not:
$x^2\ −\ 3\sqrt{3}x\ +\ 6\ =\ 0,\ x\ =\ \sqrt{3}$ and $x\ =\ −2\sqrt{3}$
Given:
The given equation is $x^2\ −\ 3\sqrt{3}x\ +\ 6\ =\ 0$.
To do:
We have to determine whether $x=\sqrt{3}, x=-2\sqrt{3}$ are solutions of the given equation.
Solution:
If the given values are the solutions of the given equation then they should satisfy the given equation.
Therefore,
For $x=\sqrt{3}$,
LHS$=x^2 − 3\sqrt{3}x + 6$
$=(\sqrt{3})^2-3\sqrt{3}(\sqrt{3})+6$
$=3-9+6$
$=0$
$=$RHS
Hence, $x=\sqrt{3}$ is a solution of the given equation.
For $x=-2\sqrt{3}$,
LHS$=x^2 − 3\sqrt{3}x + 6$
$=(-2\sqrt{3})^2-3\sqrt{3}(-2\sqrt{3})+6$
$=12+18+6$
$=36$
RHS$=0$
LHS$≠$RHS
Hence, $x=-2\sqrt{3}$ is not a solution of the given equation. 
- Related Articles
- In the following, determine whether the given values are solutions of the given equation or not: $x^2\ –\ \sqrt{2}x\ –\ 4\ =\ 0,\ x\ =\ -\sqrt{2},\ x\ =\ -2\sqrt{2}$
- In the following, determine whether the given values are solutions of the given equation or not: $2x^2\ –\ x\ +\ 9\ =\ x^2\ +\ 4x\ +\ 3,\ x\ =\ 2,\ x\ =\ 3$
- Solve the equation for x: $4\sqrt{3} x^{2} +5x-2\sqrt{3} =0$
- Solve the following quadratic equation for x:$4\sqrt{3} x^{2} +5x-2\sqrt{3} =0$
- Solve for $x:\ \sqrt{3} x^{2} -2\sqrt{2} x-2\sqrt{3} =0$."\n33207"
- Choose the correct answer from the given four options in the following questions:Which of the following equations has no real roots?(A) \( x^{2}-4 x+3 \sqrt{2}=0 \)(B) \( x^{2}+4 x-3 \sqrt{2}=0 \)(C) \( x^{2}-4 x-3 \sqrt{2}=0 \)(D) \( 3 x^{2}+4 \sqrt{3} x+4=0 \)
- Which of the following is not a polynomial?(a) $x^{2}+\sqrt{2} x+3$ (b) $x^{3}+3 x^{2}-3$ (c) $6 x+4$ d) $x^{2}-\sqrt{2 x}+6$
- Determine, if 3 is a root of the equation given below:$\sqrt{x^2-4x+3} + \sqrt{x^2-9} = \sqrt{4x^2-14x+16}$
- If $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=x,\ \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=y$, find the value $x^{2}+y^{2}+x y$.
- Choose the correct answer from the given four options in the following questions:Which of the following equations has the sum of its roots as 3 ?(A) \( 2 x^{2}-3 x+6=0 \)(B) \( -x^{2}+3 x-3=0 \),b>(C) \( \sqrt{2} x^{2}-\frac{3}{\sqrt{2}} x+1=0 \)(D) \( 3 x^{2}-3 x+3=0 \)
- Solve the following system of equations: $\sqrt{2}x\ –\ \sqrt{3}y\ =\ 0$ $\sqrt{3}x\ −\ \sqrt{8}y\ =\ 0$
- If $\sqrt{3}$ and $-\sqrt{3}$ are the zeroes of $( x^{4}+x^{3}-23 x^{2}=3 x+60)$, find the all zeroes of given polynomial.
- Solve the following quadratic equation by factorization: $\sqrt{3}x^2-2\sqrt{2}x-2\sqrt3=0$
- In the following, determine whether the given values are solutions of the given equation or not: $x^2\ +\ x\ +\ 1\ =\ 0,\ x\ =\ 0,\ x\ =\ 1$
- In the following, determine whether the given values are solutions of the given equation or not:$x^2\ –\ 3x\ +\ 2\ =\ 0,\ x\ =\ 2,\ x\ =\ –1$

Advertisements