- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In the following, determine whether the given values are solutions of the given equation or not:
$a^2x^2\ β\ 3abx\ +\ 2b^2\ =\ 0,\ x\ =\ \frac{a}{b},\ x\ =\ \frac{b}{a}$
Given:
The given equation is $a^2x^2\ –\ 3abx\ +\ 2b^2\ =\ 0$.
To do:
We have to determine whether $x=\frac{a}{b}, x=\frac{b}{a}$ are solutions of the given equation.
Solution:
If the given values are the solutions of the given equation then they should satisfy the given equation.
Therefore,
For $x=\frac{a}{b}$,
LHS$=a^2x^2 – 3abx + 2b^2$.
$=a^2(\frac{a}{b})^2-3ab(\frac{a}{b})+2b^2$
$=a^2(\frac{a^2}{b^2})-3a^2+2b^2$
$=\frac{a^4}{b^2}-3a^2+2b^2$
$≠$RHS
Hence, $x=\frac{a}{b}$ is not a solution of the given equation.
For $x=\frac{b}{a}$,
LHS$=a^2x^2 – 3abx + 2b^2$
$=a^2(\frac{b}{a})^2-3ab(\frac{b}{a})+2b^2$
$=a^2(\frac{b^2}{a^2})-3b^2+2b^2$
$=b^2-3b^2+2b^2$
$=0$
RHS$=0$
LHS$=$RHS
Hence, $x=\frac{b}{a}$ is a solution of the given equation.β
- Related Articles
- In the following, determine whether the given values are solutions of the given equation or not:$x^2\ β\ 3x\ +\ 2\ =\ 0,\ x\ =\ 2,\ x\ =\ β1$
- In the following, determine whether the given values are solutions of the given equation or not: $x^2\ +\ x\ +\ 1\ =\ 0,\ x\ =\ 0,\ x\ =\ 1$
- In the following, determine whether the given values are solutions of the given equation or not: $2x^2\ β\ x\ +\ 9\ =\ x^2\ +\ 4x\ +\ 3,\ x\ =\ 2,\ x\ =\ 3$
- In the following, determine whether the given values are solutions of the given equation or not: $x^2\ β\ \sqrt{2}x\ β\ 4\ =\ 0,\ x\ =\ -\sqrt{2},\ x\ =\ -2\sqrt{2}$
- In the following, determine whether the given values are solutions of the given equation or not: $x\ +\ \frac{1}{x}\ =\ \frac{13}{6},\ x\ =\ \frac{5}{6},\ x\ =\ \frac{4}{3}$
- In the following, determine whether the given values are solutions of the given equation or not: $x^2\ β\ 3\sqrt{3}x\ +\ 6\ =\ 0,\ x\ =\ \sqrt{3}$Β andΒ $x\ =\ β2\sqrt{3}$
- If roots of equation $x^2+x+1=0$ are $a,\ b$ and roots of $x^2+px+q=0$ are $\frac{a}{b},\ \frac{b}{a}$; then find the value of $p+q$.
- Solve the following system of equations by the method of cross-multiplication: $\frac{a^2}{x}-\frac{b^2}{y}=0$ $\frac{a^2b}{x}+\frac{b^2a}{y}=a+b, x, yβ 0$
- Solve the following quadratic equation by factorization: $a^2x^2\ β\ 3abx\ +\ 2b^2\ =\ 0$
- Solve the following pairs of equations:\( \frac{x}{a}+\frac{y}{b}=a+b \)\( \frac{x}{a^{2}}+\frac{y}{b^{2}}=2, a, b β 0 \)
- Find and correct the errors in the following.(a) \( (2 x+5)^{2}=4 x^{2}+25 \)(b) \( \left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=x^{2}-\frac{1}{4} \)(c) \( (5 a-b)^{2}=10 a^{2}-5 a b+b^{2} \)(d) \( (p-3)(p-7)=p^{2}+21 \)
- Solve the following pairs of linear equations: (i) \( p x+q y=p-q \)$q x-p y=p+q$(ii) \( a x+b y=c \)$b x+a y=1+c$,b>(iii) \( \frac{x}{a}-\frac{y}{b}=0 \)$a x+b y=a^{2}+b^{2}$(iv) \( (a-b) x+(a+b) y=a^{2}-2 a b-b^{2} \)$(a+b)(x+y)=a^{2}+b^{2}$(v) \( 152 x-378 y=-74 \)$-378 x+152 y=-604$.
- Solve the following quadratic equation by factorization: $\frac{a}{x-b}+\frac{b}{x-a}=2, x β a, b$
- Verify whether the following are zeroes of the polynomial, indicated against them.(i) \( p(x)=3 x+1, x=-\frac{1}{3} \)(ii) \( p(x)=5 x-\pi, x=\frac{4}{5} \)(iii) \( p(x)=x^{2}-1, x=1,-1 \)(iv) \( p(x)=(x+1)(x-2), x=-1,2 \)(v) \( p(x)=x^{2}, x=0 \)(vi) \( p(x)=l x+m, x=-\frac{m}{l} \)(vii) \( p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \)(viii) \( p(x)=2 x+1, x=\frac{1}{2} \)
- Solve the equation Solution: Given equation: $\frac{4}{x} -3=\frac{5}{2x+3} ;\ x\neq 0,-3/2,\ for\ x.$
