- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In the following, determine whether the given values are solutions of the given equation or not:
$2x^2\ β\ x\ +\ 9\ =\ x^2\ +\ 4x\ +\ 3,\ x\ =\ 2,\ x\ =\ 3$
Given:
The given equation is $2x^2\ –\ x\ +\ 9\ =\ x^2\ +\ 4x\ +\ 3$
To do:
We have to determine whether $x=2, x=3$ are solutions of the given equation.
Solution:
If the given values are the solutions of the given equation then they should satisfy the given equation.
Therefore,
For $x=2$,
LHS$=2x^2-x+9$
$=2(2)^2-2+9$
$=8-2+9$
$=15$
RHS$=x^2+4x+3$
$=(2)^2+4(2)+3$
$=4+8+3$
$=15$
LHS$=$RHS
Hence, $x=2$ is a solution of the given equation.
For $x=3$,
LHS$=2x^2-x+9$
$=2(3)^2-3+9$
$=18-3+9$
$=24$
RHS$=x^2+4x+3$
$=(3)^2+4(3)+3$
$=9+12+3$
$=24$
LHS$=$RHS
Hence, $x=3$ is a solution of the given equation.β
- Related Articles
- In the following, determine whether the given values are solutions of the given equation or not: $x^2\ β\ 3\sqrt{3}x\ +\ 6\ =\ 0,\ x\ =\ \sqrt{3}$Β andΒ $x\ =\ β2\sqrt{3}$
- In the following, determine whether the given values are solutions of the given equation or not:$x^2\ β\ 3x\ +\ 2\ =\ 0,\ x\ =\ 2,\ x\ =\ β1$
- In the following, determine whether the given values are solutions of the given equation or not: $x^2\ β\ \sqrt{2}x\ β\ 4\ =\ 0,\ x\ =\ -\sqrt{2},\ x\ =\ -2\sqrt{2}$
- In the following, determine whether the given values are solutions of the given equation or not: $x^2\ +\ x\ +\ 1\ =\ 0,\ x\ =\ 0,\ x\ =\ 1$
- In the following, determine whether the given values are solutions of the given equation or not: $a^2x^2\ β\ 3abx\ +\ 2b^2\ =\ 0,\ x\ =\ \frac{a}{b},\ x\ =\ \frac{b}{a}$
- Determine, if 3 is a root of the equation given below:$\sqrt{x^2-4x+3} + \sqrt{x^2-9} = \sqrt{4x^2-14x+16}$
- In the following, determine whether the given values are solutions of the given equation or not: $x\ +\ \frac{1}{x}\ =\ \frac{13}{6},\ x\ =\ \frac{5}{6},\ x\ =\ \frac{4}{3}$
- Check whether the following are quadratic equations:$x^3 -4x^2 -x + 1 = (x-2)^3$
- Check whether the following are quadratic equations:$x^2 - 2x = (- 2) (3-x)$
- Factorise the the given equation. : $2 x^{2} + 3 x + 1 = 0$
- Check whether the following are quadratic equations:$(x + 2)^3 = 2x(x^2 β 1)$
- Choose the correct answer from the given four options in the following questions:Which of the following is not a quadratic equation?(A) \( 2(x-1)^{2}=4 x^{2}-2 x+1 \)(B) \( 2 x-x^{2}=x^{2}+5 \)(C) \( (\sqrt{2} x+\sqrt{3})^{2}+x^{2}=3 x^{2}-5 x \)(D) \( \left(x^{2}+2 x\right)^{2}=x^{4}+3+4 x^{3} \)
- Solve the equation Solution: Given equation: $\frac{4}{x} -3=\frac{5}{2x+3} ;\ x\neq 0,-3/2,\ for\ x.$
- Solve the following quadratic equation by factorization: $\frac{x\ +\ 3}{x\ +\ 2}\ =\ \frac{3x\ -\ 7}{2x\ -\ 3},\ x\ β \ -2,\ \frac{3}{2}$
- Determine which of the following polynomials has \( (x+1) \) a factor:(i) \( x^{3}+x^{2}+x+1 \)(ii) \( x^{4}+x^{3}+x^{2}+x+1 \)(iii) \( x^{4}+3 x^{3}+3 x^{2}+x+1 \)(iv) \( x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2} \)

Advertisements