In the figure two straight lines $ \mathrm{AB} \& \mathrm{CD} $ intersect at $ \mathrm{O} $. If $ \angle \mathrm{COT}=60^{\circ} $, find $ \mathrm{a}, \mathrm{b}, \mathrm{c} $.
"
Given:
Two straight lines \( \mathrm{AB} \& \mathrm{CD} \) intersect at \( \mathrm{O} \).
\( \angle \mathrm{COT}=60^{\circ} \),
To do:
We have to find \( \mathrm{a}, \mathrm{b}, \mathrm{c} \).
Solution:
We know that,
Vertically opposite angles are equal.
Sum of the angles on a straight line is $180^o$.
Sum of the angles about a point is $360^o$.
Therefore,
$a=4b$....(i)
$4b+60^o+b=180^o$
$\Rightarrow 5b=180^o-60^o$
$\Rightarrow 5b=120^o$
$\Rightarrow b=\frac{120^o}{5}$
$\Rightarrow b=24^o$
$a=4(24^o)$
$=96^o$
$4b+2c=180^o$
$4(24^o)+2c=180^o$
$96^o+2c=180^o$
$2c=180^o-96^o$
$2c=84^o$
$c=\frac{84^o}{2}$
$c=42^o$
Therefore, $\mathrm{a}=96^o, \mathrm{b}=24^o, \mathrm{c}=42^o$.
- Related Articles
- In Fig. 6.13, lines \( \mathrm{AB} \) and \( \mathrm{CD} \) intersect at \( \mathrm{O} \). If \( \angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ} \) and \( \angle \mathrm{BOD}=40^{\circ} \), find \( \angle \mathrm{BOE} \) and reflex \( \angle \mathrm{COE} \)."\n
- In Fig. 6.30, if \( \mathrm{AB} \| \mathrm{CD} \), EF \( \perp \mathrm{CD} \) and \( \angle \mathrm{GED}=126^{\circ} \), find \( \angle \mathrm{AGE}, \angle \mathrm{GEF} \) and \( \angle \mathrm{FGE} \)."\n
- Find \( \mathrm{x} \) if \( \mathrm{AB}\|\mathrm{CD}\| \mathrm{EF} \)."\n
- In Fig. 6.42, if lines \( \mathrm{PQ} \) and \( \mathrm{RS} \) intersect at point \( \mathrm{T} \), such that \( \angle \mathrm{PRT}=40^{\circ}, \angle \mathrm{RPT}=95^{\circ} \) and \( \angle \mathrm{TSQ}=75^{\circ} \), find \( \angle \mathrm{SQT} \)."\n
- \( \mathrm{ABCD} \) is a cyclic quadrilateral whose diagonals intersect at a point \( \mathrm{E} \). If \( \angle \mathrm{DBC}=70^{\circ} \), \( \angle \mathrm{BAC} \) is \( 30^{\circ} \), find \( \angle \mathrm{BCD} \). Further, if \( \mathrm{AB}=\mathrm{BC} \), find \( \angle \mathrm{ECD} \).
- In Fig. 6.14, lines \( \mathrm{XY} \) and \( \mathrm{MN} \) intersect at \( O \). If \( \angle \mathrm{POY}=90^{\circ} \) and \( a: b=2: 3 \), find \( c \)."\n
- In Fig. 6.32, if \( \mathrm{AB} \| \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ} \) and \( \angle \mathrm{PRD}=127^{\circ} \), find \( x \) and \( y \)."\n
- In Fig. 6.41, if \( \mathrm{AB} \| \mathrm{DE}, \angle \mathrm{BAC}=35^{\circ} \) and \( \angle \mathrm{CDE}=53^{\circ} \), find \( \angle \mathrm{DCE} \)."\n
- In figure, if \( \angle \mathrm{A}=\angle \mathrm{C}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{BP}=15 \mathrm{~cm} \), \( \mathrm{AP}=12 \mathrm{~cm} \) and \( \mathrm{CP}=4 \mathrm{~cm} \), then find the lengths of \( \mathrm{PD} \) and CD."
- If a line intersects two concentric circles (circles with the same centre) with centre \( \mathrm{O} \) at \( \mathrm{A}, \mathrm{B}, \mathrm{C} \) and D, prove that \( \mathrm{AB}=\mathrm{CD} \).(see figure below)"\n
- In an isosceles triangle \( \mathrm{ABC} \), with \( \mathrm{AB}=\mathrm{AC} \), the bisectors of \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \) intersect each other at \( O \). Join \( A \) to \( O \). Show that :(i) \( \mathrm{OB}=\mathrm{OC} \)(ii) \( \mathrm{AO} \) bisects \( \angle \mathrm{A} \)
- In figure below, if \( \mathrm{AB} \| \mathrm{DC} \) and \( \mathrm{AC} \) and \( \mathrm{PQ} \) intersect each other at the point \( \mathrm{O} \), prove that \( \mathrm{OA} \cdot \mathrm{CQ}=\mathrm{OC} \cdot \mathrm{AP} \)."
- In figure below, \( \mathrm{ABC} \) and \( \mathrm{ABD} \) are two triangles on the same base \( \mathrm{AB} \). If line- segment \( \mathrm{CD} \) is bisected by \( \mathrm{AB} \) at \( \mathrm{O} \), show that \( \operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD}) \)."\n
- \( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
- \( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{CD} \) and \( \mathrm{AD}=\mathrm{BC} \) (see below figure). Show that(i) \( \angle \mathrm{A}=\angle \mathrm{B} \)(ii) \( \angle \mathrm{C}=\angle \mathrm{D} \)(iii) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{BAD} \)(iv) diagonal \( \mathrm{AC}= \) diagonal \( \mathrm{BD} \)[Hint: Extend \( \mathrm{AB} \) and draw a line through \( \mathrm{C} \) parallel to \( \mathrm{DA} \) intersecting \( \mathrm{AB} \) produced at E.]"\n
Kickstart Your Career
Get certified by completing the course
Get Started