- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# In the figure, there are two concentric circles with centre O. $ P R T $ and $ P Q S $ are tangents to the inner circle from a point $ P $ lying on the outer circle. If $ P R=5 \mathrm{~cm} $, find the length of $ P S $."

Given:

In the figure, there are two concentric circles with centre O. \( P R T \) and \( P Q S \) are tangents to the inner circle from a point \( P \) lying on the outer circle.

\( P R=5 \mathrm{~cm} \).

To do:

We have to find the length of \( P S \).

Solution:

Join $OS$ and $OP$.

In $\triangle POS$,

$PO = OS$

This implies,

$\triangle POS$ is an isosceles triangle.

We know that,

In an isosceles triangle, if a line drawn perpendicular to the base of the triangle from the common vertex of the equal sides, then that line will bisect the base.

$PQ = PR = 5\ cm$ ($PRT$ and $PQS$ are tangents to the inner circle from a point $P$ lying on the outer circle)

$PQ = QS$

$PQ = 5\ cm$

$QS = 5\ cm$

From the figure,

$PS = PQ + QS$

$PS = 5 + 5$

$PS = 10\ cm$

**The length of \( P S \) is $10\ cm$.**

- Related Articles
- In the figure, there are two concentric circles with centre \( O \) of radii \( 5 \mathrm{~cm} \) and \( 3 \mathrm{~cm} \). From an external point \( P \), tangents \( P A \) and \( P B \) are drawn to these circles. If \( A P=12 \mathrm{~cm} \), find the length of \( B P \)."\n
- In the figure, tangents \( P Q \) and \( P R \) are drawn from an external point \( P \) to a circle with centre $O$, such that \( \angle R P Q=30^{\circ} . \) A chord \( R S \) is drawn parallel to the tangent \( P Q \). Find \( \angle R Q S \)."\n
- In the figure, \( P Q \) is tangent at a point \( R \) of the circle with centre \( O \). If \( \angle T R Q=30^{\circ} \), find \( m \angle P R S \)."\n
- In the figure, \( P Q \) is a tangent from an external point \( P \) to a circle with centre \( O \) and \( O P \) cuts the circle at \( T \) and \( Q O R \) is a diameter. If \( \angle P O R=130^{\circ} \) and \( S \) is a point on the circle, find \( \angle 1+\angle 2 \)."\n
- In the figure, common tangents \( P Q \) and \( R S \) to two circles intersect at \( A \). Prove that \( P Q=R S \)."\n
- From a point \( P \), two tangents \( P A \) and \( P B \) are drawn to a circle with centre \( O \). If \( O P= \) diameter of the circle, show that \( \Delta A P B \) is equilateral.
- In the figure, \(P A \) and \( P B \) are tangents from an external point \( P \) to a circle with centre \( O \). \( L N \) touches the circle at \( M \). Prove that \( P L+L M=P N+M N \)."\n
- In the figure \( P O \perp Q 0 \). The tangents to the circle at \( P \) and \( Q \) intersect at a point \( T \). Prove that \( P Q \) and \( O T \) are right bisectors of each other."\n
- In the figure, \( P A \) and \( P B \) are tangents to the circle from an external point \( P \). \( C D \) is another tangent touching the circle at \( Q \). If \( PA=12\ cm, QC=QD=3\ cm, \) then find \( P C+P D \)."\n
- In the figure, \( O Q: P Q=3: 4 \) and perimeter of \( \Delta P O Q=60 \mathrm{~cm} \). Determine \( P Q, Q R \) and \( O P \)."\n
- From an external point \( P \), tangents \( P A \) and \( P B \) are drawn to a circle with centre \( O \). At one point \( E \) on the circle tangent is drawn, which intersects \( P A \) and \( P B \) at \( C \) and \( D \) respectively. If \( P A=14 \mathrm{~cm} \), find the perimeter of \( \triangle P C D \).
- \( A \) is a point at a distance \( 13 \mathrm{~cm} \) from the centre \( O \) of a circle of radius \( 5 \mathrm{~cm} \). \( A P \) and \( A Q \) are the tangents to the circle at \( P \) and \( Q \). If a tangent \( B C \) is drawn at a point \( R \) lying on the minor arc \( P Q \) to intersect \( A P \) at \( B \) and \( A Q \) at \( C \), find the perimeter of the \( \triangle A B C \).
- From an external point \( P \), tangents \( P A=P B \) are drawn to a circle with centre \( O \). If \( \angle P A B=50^{\circ} \), then find \( \angle A O B \).
- Two circles touch externally at a point \( P \). From a point \( T \) on the tangent at \( P \), tangents \( T O \) and TR are drawn to the circles with points of contact \( Q \) and \( R \) respectively. Prove that \( TQ = TR \)."\n
- A triangle \( P Q R \) is drawn to circumscribe a circle of radius \( 8 \mathrm{~cm} \) such that the segments \( Q T \) and \( T R \), into which \( Q R \) is divided by the point of contact \( T \), are of lengths \( 14 \mathrm{~cm} \) and \( 16 \mathrm{~cm} \) respectively. If area of \( \Delta P Q R \) is \( 336 \mathrm{~cm}^{2} \), find the sides \( P Q \) and \( P R \).