In the below figure, $ O A B C $ is a square of side $ 7 \mathrm{~cm} $. If $ O A P C $ is a quadrant of a circle with centre O, then find the area of the shaded region. (Use $ \pi=22 / 7 $ ) "
Given:
\( O A B C \) is a square of side \( 7 \mathrm{~cm} \).
\( O A P C \) is a quadrant of a circle with centre O.
To do:
We have to find the area of the shaded region.
Solution:
Length of the side of the square $=7\ cm$
Area of the square $= (7)^2$
$= 49\ cm^2$
Radius of the quadrant $= 7\ cm$
Therefore,
Area of the quadrant $=\frac{1}{4} \pi r^{2}$
$=\frac{1}{4} \times \frac{22}{7} \times 7^2$
$=\frac{77}{2}$
$=38.5 \mathrm{~cm}^{2}$
Area of the shaded region $=$ Area of the square $-$ Area of the quadrant
$=49-38.5$
$=10.5 \mathrm{~cm}^{2}$
The area of the shaded region is $10.5\ cm^2$.
Related Articles In the below figure, a square \( O A B C \) is inscribed in a quadrant \( O P B Q \). If \( O A=15 \mathrm{~cm} \), find the area of shaded region (use \( \pi=3.14)."\n
In the below figure, a square \( O A B C \) is inscribed in a quadrant \( O P B Q \) of a circle. If \( O A=21 \mathrm{~cm} \), find the area of the shaded region."\n
In the below figure, \( O A C B \) is a quadrant of a circle with centre \( O \) and radius \( 3.5 \mathrm{~cm} \). If \( O D=2 \mathrm{~cm} \), find the area of the shaded region."\n
In fig OABC is a square of side 7 cm. If OAPC is a quadrant of a circle with center O, then find the area of the shaded region.$\left[ Use\ \pi =\frac{22}{7}\right]$"\n
In the below figure, \( O A C B \) is a quadrant of a circle with centre \( O \) and radius \( 3.5 \mathrm{~cm} \). If \( O D=2 \mathrm{~cm} \), find the area of the quadrant \( O A C B \)."\n
Find the area of the shaded region in the below figure, if \( A C=24 \mathrm{~cm}, B C=10 \mathrm{~cm} \) and \( O \) is the centre of the circle. (Use \( \pi=3.14) \)"\n
In the figure, OACB is a quadrant of a circle with centre O and radius 3.5 cm. If $OD = 2\ cm$, find the area of the shaded region."
In the figure, OACB is a quadrant of a circle with centre O and radius 3.5 cm. If $OD = 2\ cm$, find the area of the (i) quadrant OACB.(ii) shaded region."
In the figure below, \( A B C D \) is a square with side \( 2 \sqrt{2} \mathrm{~cm} \) and inscribed in a circle. Find the area of the shaded region. (Use \( \pi=3.14) \)"\n
In the below figure, \( A B C D \) is a trapezium of area \( 24.5 \mathrm{~cm}^{2} . \) In it, \( A D \| B C, \angle D A B=90^{\circ} \), \( A D=10 \mathrm{~cm} \) and \( B C=4 \mathrm{~cm} \). If \( A B E \) is a quadrant of a circle, find the area of the shaded region. (Take \( \pi=22 / 7) \)."\n
Find the area of a shaded region in the below figure, where a circular arc of radius \( 7 \mathrm{~cm} \) has been drawn with vertex \( A \) of an equilateral triangle \( A B C \) of side \( 14 \mathrm{~cm} \) as centre. (Use \( \pi=22 / 7 \) and \( \sqrt{3}=1.73) \)"\n
In the below figure, \( A B \) and \( C D \) are two diameters of a circle perpendicular to each other and OD is the diameter of the smaller circle. If \( O A=7 \mathrm{~cm} \), find the area of the shaded region."\n
Find the area of the shaded region in the given figure, if $PQ = 24\ cm, PR = 7\ cm$ and $O$ is the centre of the circle."
Find the area of the shaded region, if $PQ=24 cm, PR=7 cm$, and O is the center of the circle."\n
In the figure below, \( A B C D \) is a trapezium with \( A B \| D C, A B=18 \mathrm{~cm}, D C=32 \mathrm{~cm} \) and the distance between \( A B \) and \( D C \) is \( 14 \mathrm{~cm} \). Circles of equal radii \( 7 \mathrm{~cm} \) with centres \( A, B, C \) and \( D \) have been drawn. Then, find the area of the shaded region of the figure. (Use \( \pi=22 / 7) \)."\n
Kickstart Your Career
Get certified by completing the course
Get Started