In quadrilateral $ A C B D $, $ \mathrm{AC}=\mathrm{AD} $ and $ \mathrm{AB} $ bisects $ \angle \mathrm{A} $ (see Fig. 7.16). Show that $ \triangle \mathrm{ABC} \cong \triangle \mathrm{ABD} $. What can you say about $ \mathrm{BC} $ and $ \mathrm{BD} $ ? "64391"
Given:
In quadrilateral $ABCD, AC=AD$ and bisects $\angle A$.
To do:
We have to show that $\triangle ABC\cong ABCD$ and say about $BC$ and $BD$.
Solution:
Let us consider $\triangle ABC$ and $\triangle ABD$.
Given,
$AC=AD$
The line segment $AB$ bisects $\angle A$.
Therefore,
$\angle CAB=\angle DAB$
We know that,
According to Rule of Side-Angle-Side Congruence:
Triangles are said to be congruent if any pair of corresponding sides and their included angles are equal in both triangles.
Therefore,
$\triangle ABC\cong ABCD$
We also know that,
From corresponding parts of congruent triangles: If two triangles are congruent, all of their corresponding angles and sides must be equal.
This implies,
$BC=BD$.
Related Articles In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is the perpendicular bisector of \( \mathrm{BC} \) (see Fig. 7.30). Show that \( \triangle \mathrm{ABC} \) is an isosceles triangle in which \( \mathrm{AB}=\mathrm{AC} \)."\n
In Fig. 7.21, \( \mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD} \) and \( \angle \mathrm{BAD}=\angle \mathrm{EAC} \). Show that \( \mathrm{BC}=\mathrm{DE} \)."\n
\( \triangle \mathrm{ABC} \) is an isosceles triangle in which \( \mathrm{AB}=\mathrm{AC} \). Side \( \mathrm{BA} \) is produced to \( \mathrm{D} \) such that \( \mathrm{AD}=\mathrm{AB} \) (see Fig. 7.34). Show that \( \angle \mathrm{BCD} \) is a right angle."\n
\( \mathrm{ABC} \) is a triangle in which altitudes \( \mathrm{BE} \) and \( \mathrm{CF} \) to sides \( \mathrm{AC} \) and \( \mathrm{AB} \) are equal (see Fig. 7.32). Show that(i) \( \triangle \mathrm{ABE} \cong \triangle \mathrm{ACF} \)(ii) \( \mathrm{AB}=\mathrm{AC} \), i.e., \( \mathrm{ABC} \) is an isosceles triangle."\n
\( \mathrm{AD} \) is an altitude of an isosceles triangle \( \mathrm{ABC} \) in which \( \mathrm{AB}=\mathrm{AC} \). Show that(i) ADbisects BC(ii) \( \mathrm{AD} \) bisects \( \angle \mathrm{A} \).
\( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{CD} \) and \( \mathrm{AD}=\mathrm{BC} \) (see below figure). Show that(i) \( \angle \mathrm{A}=\angle \mathrm{B} \)(ii) \( \angle \mathrm{C}=\angle \mathrm{D} \)(iii) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{BAD} \)(iv) diagonal \( \mathrm{AC}= \) diagonal \( \mathrm{BD} \)[Hint: Extend \( \mathrm{AB} \) and draw a line through \( \mathrm{C} \) parallel to \( \mathrm{DA} \) intersecting \( \mathrm{AB} \) produced at E.]"\n
In \( \triangle \mathrm{ABC} \) and \( \triangle \mathrm{DEF}, \mathrm{AB}=\mathrm{DE}, \mathrm{AB} \| \mathrm{DE}, \mathrm{BC}=\mathrm{EF} \) and \( \mathrm{BC} \| EF \). Vertices \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) are joined to vertices D, E and F respectively (see below figure).Show that(i) quadrilateral ABED is a parallelogram(ii) quadrilateral \( \mathrm{BEFC} \) is a parallelogram(iii) \( \mathrm{AD} \| \mathrm{CF} \) and \( \mathrm{AD}=\mathrm{CF} \)(iv) quadrilateral ACFD is a parallelogram(v) \( \mathrm{AC}=\mathrm{DF} \)(vi) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF} \)."
\( \mathrm{AD} \) and \( \mathrm{BC} \) are equal perpendiculars to a line segment \( \mathrm{AB} \) (see Fig. 7.18). Show that \( \mathrm{CD} \) bisects \( \mathrm{AB} \)."\n
\( \mathrm{ABC} \) is an isosceles triangle with \( \mathrm{AB}=\mathrm{AC} \). Draw \( \mathrm{AP} \perp \mathrm{BC} \) to show that \( \angle \mathrm{B}=\angle \mathrm{C} \).
In \( \triangle \mathrm{ABC} \). the bisector of \( \angle \mathrm{A} \) intersects \( \mathrm{BC} \) at \( \mathrm{D} \). If \( \mathrm{AB}=8, \mathrm{AC}=10 \) and \( \mathrm{BC}=9 \), find \( \mathrm{BD} \) and \( \mathrm{DC} \).
Two sides \( \mathrm{AB} \) and \( \mathrm{BC} \) and median \( \mathrm{AM} \) of one triangle \( \mathrm{ABC} \) are respectively equal to sides \( \mathrm{PQ} \) and \( \mathrm{QR} \) and median \( \mathrm{PN} \) of \( \triangle \mathrm{PQR} \) (see Fig. 7.40). Show that:(i) \( \triangle \mathrm{ABM} \equiv \triangle \mathrm{PQN} \)(ii) \( \triangle \mathrm{ABC} \cong \triangle \mathrm{PQR} \)"\n
In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=8, \mathrm{AC}=15 \) and \( \mathrm{AD}=8.5 \), find \( \mathrm{BC} \).
\( \triangle \mathrm{ABC} \) and \( \triangle \mathrm{DBC} \) are two isosceles triangles on the same base \( B C \) and vertices \( A \) and \( D \) are on the same side of \( \mathrm{BC} \) (see Fig. 7.39). If \( \mathrm{AD} \) is extended to intersect \( \mathrm{BC} \) at \( \mathrm{P} \), show that(i) \( \triangle \mathrm{ABD} \equiv \triangle \mathrm{ACD} \)(ii) \( \triangle \mathrm{ABP} \cong \triangle \mathrm{ACP} \)(iii) \( \mathrm{AP} \) bisects \( \angle \mathrm{A} \) as well as \( \angle \mathrm{D} \).(iv) AP is the perpendicular bisector of \( \mathrm{BC} \)."
In \( \triangle \mathrm{ABC}, \angle \mathrm{C}=90^{\circ}, \mathrm{AB}=12.5 \) and \( \mathrm{BC}=12 \). Find \( \mathrm{AC} \).
\( \mathrm{AB} \) is a line segment and \( \mathrm{P} \) is its mid-point. \( \mathrm{D} \) and \( \mathrm{E} \) are points on the same side of \( \mathrm{AB} \) such that \( \angle \mathrm{BAD}=\angle \mathrm{ABE} \) and \( \angle \mathrm{EPA}=\angle \mathrm{DPB} \) (see Fig. 7.22). Show that(i) \( \triangle \mathrm{DAP} \cong \triangle \mathrm{EBP} \)(ii) \( \mathrm{AD}=\mathrm{BE} \)"\n
Kickstart Your Career
Get certified by completing the course
Get Started