In figure below, $ \mathrm{ABCD} $ is a parallelogram, $ \mathrm{AE} \perp \mathrm{DC} $ and $ \mathrm{CF} \perp \mathrm{AD} $. If $ \mathrm{AB}=16 \mathrm{~cm}, \mathrm{AE}=8 \mathrm{~cm} $ and $ \mathrm{CF}=10 \mathrm{~cm} $, find $ \mathrm{AD} $.
"
Given:
$ABCD$ is a parallelogram, $AE \perp DC$ and $CF \perp AD$.
$AB = 16\ cm, AE = 8\ cm$ and $CF = 10\ cm$.
To do:
We have to find $AD$.
Solution:
We know that,
Area of a parallelogram $=$ Base $\times$ Altitude
Therefore,
Area of parallelogram $ABCD = AB \times AE$
$= 16 \times 8$
$= 128\ cm^2$
Now,
Altitude $CF = 10\ cm$
This implies,
Area $=$ Base $(AD)\times$ Altitude$(CF)$
$128 = 10 \times AD$
$AD = \frac{128}{10}$
$AD = 12.8\ cm$
Hence, $AD = 12.8\ cm$.
- Related Articles
- In figure below, if \( \angle \mathrm{ACB}=\angle \mathrm{CDA}, \mathrm{AC}=8 \mathrm{~cm} \) and \( \mathrm{AD}=3 \mathrm{~cm} \), find \( \mathrm{BD} \)."
- In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=18 \mathrm{~cm} \). \( \mathrm{AC}=14 \mathrm{~cm} \) and \( \mathrm{AD}=14 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
- In figure below, \( \mathrm{ABC} \) is a triangle right angled at \( \mathrm{B} \) and \( \mathrm{BD} \perp \mathrm{AC} \). If \( \mathrm{AD}=4 \mathrm{~cm} \), and \( C D=5 \mathrm{~cm} \), find \( B D \) and \( A B \)."
- \( \mathrm{ABCD} \) is a trapezium in which \( \mathrm{AB} \| \mathrm{DC} \) and \( \mathrm{P} \) and \( \mathrm{Q} \) are points on \( \mathrm{AD} \) and \( B C \), respectively such that \( P Q \| D C \). If \( P D=18 \mathrm{~cm}, B Q=35 \mathrm{~cm} \) and \( \mathrm{QC}=15 \mathrm{~cm} \), find \( \mathrm{AD} \).
- In Fig. 7.21, \( \mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD} \) and \( \angle \mathrm{BAD}=\angle \mathrm{EAC} \). Show that \( \mathrm{BC}=\mathrm{DE} \)."\n
- Find the area of a quadrilateral \( \mathrm{ABCD} \) in which \( \mathrm{AB}=3 \mathrm{~cm}, \mathrm{BC}=4 \mathrm{~cm}, \mathrm{CD}=4 \mathrm{~cm} \), \( \mathrm{DA}=5 \mathrm{~cm} \) and \( \mathrm{AC}=5 \mathrm{~cm} \).
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} . \quad \) If \( \quad \mathrm{AB}+\mathrm{BC}=12 \mathrm{~cm} \) \( \mathrm{PQ}+\mathrm{QR}=15 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), find \( \mathrm{PR} \).
- ABCD is a parallelogram. The circle through \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) intersect \( \mathrm{CD} \) (produced if necessary) at \( \mathrm{E} \). Prove that \( \mathrm{AE}=\mathrm{AD} \).
- In \( \triangle \mathrm{ABC} \) and \( \triangle \mathrm{DEF}, \mathrm{AB}=\mathrm{DE}, \mathrm{AB} \| \mathrm{DE}, \mathrm{BC}=\mathrm{EF} \) and \( \mathrm{BC} \| EF \). Vertices \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) are joined to vertices D, E and F respectively (see below figure).Show that(i) quadrilateral ABED is a parallelogram(ii) quadrilateral \( \mathrm{BEFC} \) is a parallelogram(iii) \( \mathrm{AD} \| \mathrm{CF} \) and \( \mathrm{AD}=\mathrm{CF} \)(iv) quadrilateral ACFD is a parallelogram(v) \( \mathrm{AC}=\mathrm{DF} \)(vi) \( \triangle \mathrm{ABC} \equiv \triangle \mathrm{DEF} \)."
- In figure, if \( \angle \mathrm{A}=\angle \mathrm{C}, \mathrm{AB}=6 \mathrm{~cm}, \mathrm{BP}=15 \mathrm{~cm} \), \( \mathrm{AP}=12 \mathrm{~cm} \) and \( \mathrm{CP}=4 \mathrm{~cm} \), then find the lengths of \( \mathrm{PD} \) and CD."
- DL and \( B M \) are the heights on sides \( A B \) and AD respectively of parallelogram \( \mathrm{ABCD} \) (Fig 11.24). If the area of the parallelogram \( \mathrm{A} \) is \( 1470 \mathrm{~cm}^{2}, \mathrm{AB}=35 \mathrm{~cm} \) and \( \mathrm{AD}=49 \mathrm{~cm} \), find the length of \( \mathrm{BM} \)"\n
- In \( \triangle \mathrm{ABC}, \mathrm{AD} \) is a median. If \( \mathrm{AB}=8, \mathrm{AC}=15 \) and \( \mathrm{AD}=8.5 \), find \( \mathrm{BC} \).
- If \( \Delta \mathrm{ABC} \sim \Delta \mathrm{DEF}, \mathrm{AB}=4 \mathrm{~cm}, \mathrm{DE}=6 \mathrm{~cm}, \mathrm{EF}=9 \mathrm{~cm} \) and \( \mathrm{FD}=12 \mathrm{~cm} \), find the perimeter of \( \triangle \mathrm{ABC} \).
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{ZYX} . \) If \( \mathrm{AB}=3 \mathrm{~cm}, \quad \mathrm{BC}=5 \mathrm{~cm} \), \( \mathrm{CA}=6 \mathrm{~cm} \) and \( \mathrm{XY}=6 \mathrm{~cm} \), find the perimeter of \( \Delta \mathrm{XYZ} \).
- In figure below, \( \mathrm{ABCD} \) is a parallelogram and \( \mathrm{BC} \) is produced to a point \( \mathrm{Q} \) such that \( \mathrm{AD}=\mathrm{CQ} \). If \( \mathrm{AQ} \) intersect \( \mathrm{DC} \) at \( \mathrm{P} \), show that ar \( (\mathrm{BPC})= \) ar \( (\mathrm{DPQ}) \).[Hint : Join \( \mathrm{AC} \). \( ] \)"\n
Kickstart Your Career
Get certified by completing the course
Get Started