In figure below, D is the mid-point of side BC and $AE \perp BC$. If $ B C=a, A C=b, A B=C, E D=x, A D=p $ and $ A E=h, $ prove that $ b^{2}+c^{2}=2 p^{2}+\frac{a^{2}}{2} $. "
Given:
In the given figure, D is the mid-point of side BC and $AE \perp BC$.
\( B C=a, A C=b, A B=C, E D=x, A D=p \) and \( A E=h \).
To do:
We have to prove that \( b^{2}+c^{2}=2 p^{2}+\frac{a^{2}}{2} \).
Solution:
In $\triangle AED$, by using Pythagoras theorem,
$AD^2=AE^2+ED^2$
$AE^2=AD^2-ED^2$.....(i)
In $\triangle AEC$, by using Pythagoras theorem,
$AC^2=AE^2+EC^2$ $b^2=(AD^2-ED^2)+(ED+DC)^2$ (From (i))
$b^2=AD^2-ED^2+ED^2+DC^2+2ED\times DC$
$b^2=AD^2+DC^2+2DC\times ED$
$b^2=p^2+(\frac{a}{2})^2+2\times(\frac{a}{2})\times x$ (Since $DC=\frac{BC}{2}$)
$b^2=p^2+\frac{a^2}{4}+ax$......(ii)
In $\triangle AEB$, by using Pythagoras theorem,
$AB^2=AE^2+BE^2$
$c^2=(AD^2-ED^2)+(BD-ED)^2$ (From (i) and $BE=BD-ED$)
$c^2=AD^2-ED^2+BD^2+ED^2-2BD\times ED$
$c^2=AD^2+BD^2-2BD\times ED$
$c^2=p^2+(\frac{a}{2})^2-2\times(\frac{a}{2})\times x$ (Since $DC=\frac{BC}{2}$)
$c^2=p^2+\frac{a^2}{4}-ax$.....(iii)
Adding equations (ii) and (iii), we get,
$b^2+c^2=p^2+\frac{a^2}{4}+ax+p^2+\frac{a^2}{4}-ax$
$b^2+c^2=2p^2+2\times\frac{a^2}{4}$
$b^2+c^2=2p^2+\frac{a^2}{2}$
Hence proved.
Related Articles In figure below, D is the mid-point of side BC and $AE \perp BC$. If \( B C=a, A C=b, A B=C, E D=x, A D=p \) and \( A E=h, \) prove that \( b^{2}=p^{2}+a x+\frac{a^{2}}{4} \)."\n
In figure below, D is the mid-point of side BC and $AE \perp BC$. If \( B C=a, A C=b, A B=C, E D=x, A D=p \) and \( A E=h, \) prove that \( c^{2}=p^{2}-a x+\frac{a^{2}}{4} \)."\n
In a right \( \triangle A B C \) right-angled at \( C \), if \( D \) is the mid-point of \( B C \), prove that $B C^{2}=4(A D^{2}-A C^{2})$.
In a quadrilateral \( A B C D, \angle B=90^{\circ}, A D^{2}=A B^{2}+B C^{2}+C D^{2}, \) prove that $\angle A C D=90^o$.
In \( \triangle A B C, A D \perp B C \) and \( A D^{2}=B D . C D \).Prove that \( \angle B A C=90^o \)."\n
In right-angled triangle \( A B C \) in which \( \angle C=90 \), if \( D \) is the mid-point of \( B C \) prove that \( A B^{2}=4 A D^{2}-3 A C^{2} \).
If the roots of the equation $(a^2+b^2)x^2-2(ac+bd)x+(c^2+d^2)=0$ are equal, prove that $\frac{a}{b}=\frac{c}{d}$.
Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+c a+a^{2}}=1 \)
Prove that:\( \left(\frac{x^{a}}{x^{-b}}\right)^{a^{2}-a b+b^{2}} \times\left(\frac{x^{b}}{x^{-c}}\right)^{b^{2}-b c+c^{2}} \times\left(\frac{x^{c}}{x^{-a}}\right)^{c^{2}-c a+a^{2}}=1 \)
AD is the altitude of the triangle corresponding to side BC. Prove that \( A B+A C+B C>2 A D \).
$\triangle A B C$ is an isosceles triangle such that $A B=A C$, $A D \perp B C$a) Prove that $\triangle A B D \cong \triangle A C D$b) Prove that $\angle B=\angle C$c) Is D the mid-point of BC?"\n
Show that:\( \left(\frac{x^{a^{2}+b^{2}}}{x^{a b}}\right)^{a+b}\left(\frac{x^{b^{2}+c^{2}}}{x^{b c}}\right)^{b+c}\left(\frac{x^{c^{2}+a^{2}}}{x^{a c}}\right)^{a+c}= x^{2\left(a^{3}+b^{3}+c^{3}\right)} \)
Find and correct the errors in the following.(a) \( (2 x+5)^{2}=4 x^{2}+25 \)(b) \( \left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=x^{2}-\frac{1}{4} \)(c) \( (5 a-b)^{2}=10 a^{2}-5 a b+b^{2} \)(d) \( (p-3)(p-7)=p^{2}+21 \)
Prove that $a^2 + b^2 + c^2 – ab – bc – ca$ is always non-negative for all values of $a, b$ and $c$.
In \( \triangle A B C, \angle A \) is obtuse, \( P B \perp A C, \) and \( Q C \perp A B \). Prove that \( B C^{2}=\left(A C \times C P +A B \times B Q\right) \).
Kickstart Your Career
Get certified by completing the course
Get Started