"
">

In Fig. 9.25, diagonals $ A C $ and $ B D $ of quadrilateral $ A B C D $ intersect at $ O $ such that $ O B=O D $. If $ \mathrm{AB}=\mathrm{CD}, $ then show that:
$ \operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB}) $
"


Given: In a quadrilateral ABCD diagonals \( A C \) and \( B D \)  intersect at \( O \) such that \( O B=O D \).

$AB = CD$.

To do:

We have to prove that $ar (DOC) = ar (AOB)$

Solution:

Draw $DP \perp AC$ and $BQ \perp AC$.



In $\vartriangle DOP$ and $\vartriangle BOQ$,

$\angle DPO = \angle BQO=90^o$

$\angle DOP = \angle BOQ$  (Vertically opposite angles)
 
$OD = OB$ (Given)

$\vartriangle DOP \cong \vartriangle BOQ$   (By AAS congruence)

Therefore,

$DP = BQ$----(i)   (CPCT)

$ar(DOP) = ar(BOQ)$----(ii)   (Since, area of congruent triangles is equal)

In $\vartriangle CDP$ and $\vartriangle ABQ$,

$\angle CPD = \angle AQB=90^o$

$CD = AB$   (Given)

$DP = BQ$   (From equation (i))

Therefore,

$\vartriangle CDP = \vartriangle ABQ$   (By RHS congruence)

This implies,

$ar(CDP) = ar(ABQ)$    (Since, area of congruent triangles is equal)

Adding equations (ii) and (iii), we get,

$ar(DOP) + ar(CDP) = ar(BOQ) + ar(ABQ)$

$ar (DOC) = ar (AOB)$

Hence proved .

Updated on: 10-Oct-2022

23 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements