In Fig. 6.42, if lines $ \mathrm{PQ} $ and $ \mathrm{RS} $ intersect at point $ \mathrm{T} $, such that $ \angle \mathrm{PRT}=40^{\circ}, \angle \mathrm{RPT}=95^{\circ} $ and $ \angle \mathrm{TSQ}=75^{\circ} $, find $ \angle \mathrm{SQT} $. "
Given:
Lines $PQ$ and $RS$ intersect at point $T$, such that $\angle PRT=40^o, \angle RPT=95^o$ and $\angle TSQ=75^o$.
To do:
We have find $\angle SQT$.
Solution:
Let us consider $\triangle PRT$.
We know that,
The sum of the interior angles of a triangle is always $180^o$.
Therefore,
$\angle PRT+\angle RPT+\angle PTR=180^o$
By substituting the values of $\angle PRT$ and $\angle RPT$ in the above equation we get,
$95^o+40^o+\angle PTR=180^o$
$135^o+\angle PTR=180^o$
This implies,
$\angle PTR=180^o-135^o$
$\angle PTR=45^o$
We know that,
In a triangle vertically opposite angles are always equal.
This implies,
$\angle PTR=\angle STQ$
$\angle STQ=45^o$
Since the sum of the interior angles of a triangle is always $180^o$ we get,
$\angle TSQ+\angle PTR+\angle SQT=180^o$
By substituting the values we get,
$75^o+45^o+\angle SQT=180^o$
$120^o+\angle SQT=180^o$
This implies,
$\angle SQT=180^o-120^o$
$\angle SQT=60^o$
Therefore, $\angle SQT=60^o$.
Related Articles In Fig. 6.13, lines \( \mathrm{AB} \) and \( \mathrm{CD} \) intersect at \( \mathrm{O} \). If \( \angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ} \) and \( \angle \mathrm{BOD}=40^{\circ} \), find \( \angle \mathrm{BOE} \) and reflex \( \angle \mathrm{COE} \)."\n
In Fig. 6.41, if \( \mathrm{AB} \| \mathrm{DE}, \angle \mathrm{BAC}=35^{\circ} \) and \( \angle \mathrm{CDE}=53^{\circ} \), find \( \angle \mathrm{DCE} \)."\n
In Fig. 6.30, if \( \mathrm{AB} \| \mathrm{CD} \), EF \( \perp \mathrm{CD} \) and \( \angle \mathrm{GED}=126^{\circ} \), find \( \angle \mathrm{AGE}, \angle \mathrm{GEF} \) and \( \angle \mathrm{FGE} \)."\n
In Fig. \( 6.40, \angle \mathrm{X}=62^{\circ}, \angle \mathrm{XYZ}=54^{\circ} \). If \( \mathrm{YO} \) and \( Z \mathrm{O} \) are the bisectors of \( \angle \mathrm{XYZ} \) and \( \angle \mathrm{XZY} \) respectively of \( \triangle \mathrm{XYZ} \) find \( \angle \mathrm{OZY} \) and \( \angle \mathrm{YOZ} \)."\n
In Fig. 6.43, if \( \mathrm{PQ} \perp \mathrm{PS}, \mathrm{PQ} \| \mathrm{SR}, \angle \mathrm{SQR}=28^{\circ} \) and \( \angle \mathrm{QRT}=65^{\circ} \), then find the values of \( x \) and \( y \)."\n
In Fig. 6.32, if \( \mathrm{AB} \| \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ} \) and \( \angle \mathrm{PRD}=127^{\circ} \), find \( x \) and \( y \)."\n
In Fig. 6.31, if \( \mathrm{PQ} \| \mathrm{ST}, \angle \mathrm{PQR}=110^{\circ} \) and \( \angle \mathrm{RST}=130^{\circ} \), find \( \angle \mathrm{QRS} \).[Hint : Draw a line parallel to ST through point R.]"\n
\( \mathrm{ABCD} \) is a cyclic quadrilateral whose diagonals intersect at a point \( \mathrm{E} \). If \( \angle \mathrm{DBC}=70^{\circ} \), \( \angle \mathrm{BAC} \) is \( 30^{\circ} \), find \( \angle \mathrm{BCD} \). Further, if \( \mathrm{AB}=\mathrm{BC} \), find \( \angle \mathrm{ECD} \).
In triangles \( \mathrm{PQR} \) and \( \mathrm{MST}, \angle \mathrm{P}=55^{\circ}, \angle \mathrm{Q}=25^{\circ}, \angle \mathrm{M}=100^{\circ} \) and \( \angle \mathrm{S}=25^{\circ} \). Is \( \triangle \mathrm{QPR} \sim \triangle \mathrm{TSM} \) ? Why?
In Fig. 6.39, sides \( \mathrm{QP} \) and \( \mathrm{RQ} \) of \( \triangle \mathrm{PQR} \) are produced to points \( \mathrm{S} \) and T respectively. If \( \angle \mathrm{SPR}=135^{\circ} \) and \( \angle \mathrm{PQT}=110^{\circ} \), find \( \angle \mathrm{PRQ} \)."\n
In Fig. 6.15, \( \angle \mathrm{PQR}=\angle \mathrm{PRQ} \), then prove that \( \angle \mathrm{PQS}=\angle \mathrm{PRT} \)"\n
\( \triangle \mathrm{ABC} \sim \triangle \mathrm{QPR} . \) If \( \angle \mathrm{A}+\angle \mathrm{B}=130^{\circ} \) and \( \angle B+\angle C=125^{\circ} \), find \( \angle Q \).
In figure below, A, B, C and D are four points on a circle. \( \mathrm{AC} \) and \( \mathrm{BD} \) intersect at a point \( \mathrm{E} \) such that \( \angle \mathrm{BEC}=130^{\circ} \) and \( \angle \mathrm{ECD}=20^{\circ} \). Find \( \angle \mathrm{BAC} \)."\n
Construct a triangle \( \mathrm{XYZ} \) in which \( \angle \mathrm{Y}=30^{\circ}, \angle \mathrm{Z}=90^{\circ} \) and \( \mathrm{XY}+\mathrm{YZ}+\mathrm{ZX}=11 \mathrm{~cm} \).
Choose the correct answer from the given four options:It is given that \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm} \) and \( D F=7.5 \mathrm{~cm} \). Then, the following is true:(A) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=50^{\circ} \)(B) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=100^{\circ} \)(C) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ} \)(D) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \)
Kickstart Your Career
Get certified by completing the course
Get Started