In Fig. 6.32, if $ \mathrm{AB} \| \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ} $ and $ \angle \mathrm{PRD}=127^{\circ} $, find $ x $ and $ y $.
"
Given:
$AB \parallel CD$, $\angle APQ=150^0$ and $\angle PRD=127^o$.
To do:
We have to find $x$ and $y$.
Solution:
We know that,
If the lines intersected by the transversal are parallel, alternate interior angles are equal.
This implies,
$\angle APQ=\angle PQR$
By substituting the values we get,
$\angle APQ=\angle PRD$
This implies,
$x=50^o$
In the similar way, we get,
$\angle APR=\angle PRD$
By substituting the value of $\angle PRD$
We get,
$\angle APR=127^o$
We know that,
$\angle APR=\angle APQ+\angle QPR$
Now, by substituting the values of $\angle QPR=y$ and $\angle APR=127^o$
We get,
$127^o=50^o+y$
This implies,
$127^o-50^o=y$
$77^o=y$
Therefore,
$y=77^o$
Hence, the values of $x$ and $y$ are $50^o$ and $77^o$ respectively.
- Related Articles
- In Fig. 6.30, if \( \mathrm{AB} \| \mathrm{CD} \), EF \( \perp \mathrm{CD} \) and \( \angle \mathrm{GED}=126^{\circ} \), find \( \angle \mathrm{AGE}, \angle \mathrm{GEF} \) and \( \angle \mathrm{FGE} \)."\n
- In Fig. 6.41, if \( \mathrm{AB} \| \mathrm{DE}, \angle \mathrm{BAC}=35^{\circ} \) and \( \angle \mathrm{CDE}=53^{\circ} \), find \( \angle \mathrm{DCE} \)."\n
- In Fig. 6.13, lines \( \mathrm{AB} \) and \( \mathrm{CD} \) intersect at \( \mathrm{O} \). If \( \angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ} \) and \( \angle \mathrm{BOD}=40^{\circ} \), find \( \angle \mathrm{BOE} \) and reflex \( \angle \mathrm{COE} \)."\n
- In Fig. 6.43, if \( \mathrm{PQ} \perp \mathrm{PS}, \mathrm{PQ} \| \mathrm{SR}, \angle \mathrm{SQR}=28^{\circ} \) and \( \angle \mathrm{QRT}=65^{\circ} \), then find the values of \( x \) and \( y \)."\n
- In Fig. \( 6.40, \angle \mathrm{X}=62^{\circ}, \angle \mathrm{XYZ}=54^{\circ} \). If \( \mathrm{YO} \) and \( Z \mathrm{O} \) are the bisectors of \( \angle \mathrm{XYZ} \) and \( \angle \mathrm{XZY} \) respectively of \( \triangle \mathrm{XYZ} \) find \( \angle \mathrm{OZY} \) and \( \angle \mathrm{YOZ} \)."\n
- In Fig. 6.42, if lines \( \mathrm{PQ} \) and \( \mathrm{RS} \) intersect at point \( \mathrm{T} \), such that \( \angle \mathrm{PRT}=40^{\circ}, \angle \mathrm{RPT}=95^{\circ} \) and \( \angle \mathrm{TSQ}=75^{\circ} \), find \( \angle \mathrm{SQT} \)."\n
- In Fig. 6.29, if \( \mathrm{AB}\|\mathrm{CD}, \mathrm{CD}\| \mathrm{EF} \) and \( y: z=3: 7 \), find \( x \)."\n
- In Fig. 6.39, sides \( \mathrm{QP} \) and \( \mathrm{RQ} \) of \( \triangle \mathrm{PQR} \) are produced to points \( \mathrm{S} \) and T respectively. If \( \angle \mathrm{SPR}=135^{\circ} \) and \( \angle \mathrm{PQT}=110^{\circ} \), find \( \angle \mathrm{PRQ} \)."\n
- In Fig. 6.31, if \( \mathrm{PQ} \| \mathrm{ST}, \angle \mathrm{PQR}=110^{\circ} \) and \( \angle \mathrm{RST}=130^{\circ} \), find \( \angle \mathrm{QRS} \).[Hint : Draw a line parallel to ST through point R.]"\n
- In triangles \( \mathrm{PQR} \) and \( \mathrm{MST}, \angle \mathrm{P}=55^{\circ}, \angle \mathrm{Q}=25^{\circ}, \angle \mathrm{M}=100^{\circ} \) and \( \angle \mathrm{S}=25^{\circ} \). Is \( \triangle \mathrm{QPR} \sim \triangle \mathrm{TSM} \) ? Why?
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{QPR} . \) If \( \angle \mathrm{A}+\angle \mathrm{B}=130^{\circ} \) and \( \angle B+\angle C=125^{\circ} \), find \( \angle Q \).
- \( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
- Construct a triangle \( \mathrm{XYZ} \) in which \( \angle \mathrm{Y}=30^{\circ}, \angle \mathrm{Z}=90^{\circ} \) and \( \mathrm{XY}+\mathrm{YZ}+\mathrm{ZX}=11 \mathrm{~cm} \).
- In the figure two straight lines \( \mathrm{AB} \& \mathrm{CD} \) intersect at \( \mathrm{O} \). If \( \angle \mathrm{COT}=60^{\circ} \), find \( \mathrm{a}, \mathrm{b}, \mathrm{c} \)."\n
- Choose the correct answer from the given four options:It is given that \( \triangle \mathrm{ABC} \sim \triangle \mathrm{DFE}, \angle \mathrm{A}=30^{\circ}, \angle \mathrm{C}=50^{\circ}, \mathrm{AB}=5 \mathrm{~cm}, \mathrm{AC}=8 \mathrm{~cm} \) and \( D F=7.5 \mathrm{~cm} \). Then, the following is true:(A) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=50^{\circ} \)(B) \( \mathrm{DE}=12 \mathrm{~cm}, \angle \mathrm{F}=100^{\circ} \)(C) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=100^{\circ} \)(D) \( \mathrm{EF}=12 \mathrm{~cm}, \angle \mathrm{D}=30^{\circ} \)
Kickstart Your Career
Get certified by completing the course
Get Started