In Fig. 6.28, find the values of $ x $ and $ y $ and then show that $ \mathrm{AB}=\mathrm{CD} $.
"
To do:
We have to find the values of $x$ and $Y$ and then show that $AB \parallel CD$.
Solution:
We know that,
The sum of the measures of the angles in linear pairs is always $180^o$.
Since $x$ and $50^o$ are linear pairs of $AB$.
We get,
$x+50^o=180^o$
This implies,
$x=180^o-50^o$
Therefore,
$x=130^o$
We also know that,
Vertically opposite angles are equal.
Therefore, we get $y=130^o$ (since $X$ and $Y$ are vertically opposite angles)
Therefore,
$x=y=130^0$
We know that,
If alternate interior angles are equal, then the two lines are parallel.
Since,
$x$ and $y$ are alternate interior angles and are equal to one another
We get,
$AB \parallel CD$
Therefore,
$AB \parallel CD$
Hence proved.
- Related Articles
- In Fig. 6.29, if \( \mathrm{AB}\|\mathrm{CD}, \mathrm{CD}\| \mathrm{EF} \) and \( y: z=3: 7 \), find \( x \)."\n
- In Fig. 5.10, if \( \mathrm{AC}=\mathrm{BD} \), then prove that \( \mathrm{AB}=\mathrm{CD} \)."\n
- In Fig. 6.32, if \( \mathrm{AB} \| \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ} \) and \( \angle \mathrm{PRD}=127^{\circ} \), find \( x \) and \( y \)."\n
- \( \mathrm{AD} \) and \( \mathrm{BC} \) are equal perpendiculars to a line segment \( \mathrm{AB} \) (see Fig. 7.18). Show that \( \mathrm{CD} \) bisects \( \mathrm{AB} \)."\n
- Find \( \mathrm{x} \) if \( \mathrm{AB}\|\mathrm{CD}\| \mathrm{EF} \)."\n
- In Fig. 6.30, if \( \mathrm{AB} \| \mathrm{CD} \), EF \( \perp \mathrm{CD} \) and \( \angle \mathrm{GED}=126^{\circ} \), find \( \angle \mathrm{AGE}, \angle \mathrm{GEF} \) and \( \angle \mathrm{FGE} \)."\n
- In Fig. 6.43, if \( \mathrm{PQ} \perp \mathrm{PS}, \mathrm{PQ} \| \mathrm{SR}, \angle \mathrm{SQR}=28^{\circ} \) and \( \angle \mathrm{QRT}=65^{\circ} \), then find the values of \( x \) and \( y \)."\n
- In Fig. 7.21, \( \mathrm{AC}=\mathrm{AE}, \mathrm{AB}=\mathrm{AD} \) and \( \angle \mathrm{BAD}=\angle \mathrm{EAC} \). Show that \( \mathrm{BC}=\mathrm{DE} \)."\n
- \( \mathrm{AB} \) and \( \mathrm{CD} \) are respectively the smallest and longest sides of a quadrilateral \( \mathrm{ABCD} \) (see Fig. 7.50). Show that \( \angle A>\angle C \) and \( \angle \mathrm{B}>\angle \mathrm{D} \)."\n
- \( \mathrm{AD} \) and \( \mathrm{BC} \) are equal perpendiculars to a line segment \( \mathrm{AB} \) (See the given figure). Show that CD bisects AB."\n
- In Fig. 9.25, diagonals \( A C \) and \( B D \) of quadrilateral \( A B C D \) intersect at \( O \) such that \( O B=O D \). If \( \mathrm{AB}=\mathrm{CD}, \) then show that:\( \operatorname{ar}(\mathrm{DOC})=\operatorname{ar}(\mathrm{AOB}) \)"\n
- Find the values of $a$ and $b$ if \( \mathrm{AB} \| \mathrm{DE} \). "\n
- Given \( \overline{\mathrm{AB}} \) of length \( 7.3 \mathrm{~cm} \) and \( \overline{\mathrm{CD}} \) of length \( 3.4 \mathrm{~cm} \), construct a line segment \( \overline{X Y} \) such that the length of \( \overline{X Y} \) is equal to the difference between the lengths of \( \overline{\mathrm{AB}} \) and \( \overline{\mathrm{CD}} \). Verify by measurement.
- In Fig. 6.13, lines \( \mathrm{AB} \) and \( \mathrm{CD} \) intersect at \( \mathrm{O} \). If \( \angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ} \) and \( \angle \mathrm{BOD}=40^{\circ} \), find \( \angle \mathrm{BOE} \) and reflex \( \angle \mathrm{COE} \)."\n
- In Fig. 6.16, if \( x+y=w+z \), then prove that \( \mathrm{AOB} \) is a line."\n
Kickstart Your Career
Get certified by completing the course
Get Started