In Fig. 6.14, lines $ \mathrm{XY} $ and $ \mathrm{MN} $ intersect at $ O $. If $ \angle \mathrm{POY}=90^{\circ} $ and $ a: b=2: 3 $, find $ c $.
"
Given:
Lines $XY, MN$ intersect at $O$ , $\angle POY=90^o$ and $a:b=2:3$.
To do:
We have to find $c$.
Solution:
Given,
$\angle POY=90^o$ and $a:b=2:3$
We know that,
The sum of the measures of the angles in linear pairs is always $180^o$.
This implies,
$\angle POY+a+b=180^o$
By substituting $\angle POY=90^o$ in the above equation
We get,
$90^o+a+b=180^o$
$a+b=180^o-90^o$
$a+b=90^o$
Let $a$ be $2x$ and $b$ be $3x$ (since, $a:b=2:3$)
This implies,
$2x+3x=90^o$
$5x=90^o$
$x=\frac{90^o}{5}$
$x=18^o$
Therefore,
$a=2\times18^o$
$a=36^o$ and
$b=3\times18^o$
$b=54^o$
Similarly, as $b$ and $c$ are also in straight line
We get,
$b+c=180^o$
This implies,
$54^o+c=180^o$
$c=180^o-54^o$
$c=126^o$
Therefore, $c=126^o$.
- Related Articles
- In Fig. 6.13, lines \( \mathrm{AB} \) and \( \mathrm{CD} \) intersect at \( \mathrm{O} \). If \( \angle \mathrm{AOC}+\angle \mathrm{BOE}=70^{\circ} \) and \( \angle \mathrm{BOD}=40^{\circ} \), find \( \angle \mathrm{BOE} \) and reflex \( \angle \mathrm{COE} \)."\n
- In the figure two straight lines \( \mathrm{AB} \& \mathrm{CD} \) intersect at \( \mathrm{O} \). If \( \angle \mathrm{COT}=60^{\circ} \), find \( \mathrm{a}, \mathrm{b}, \mathrm{c} \)."\n
- In Fig. 6.42, if lines \( \mathrm{PQ} \) and \( \mathrm{RS} \) intersect at point \( \mathrm{T} \), such that \( \angle \mathrm{PRT}=40^{\circ}, \angle \mathrm{RPT}=95^{\circ} \) and \( \angle \mathrm{TSQ}=75^{\circ} \), find \( \angle \mathrm{SQT} \)."\n
- In \( \Delta \mathrm{XYZ}, \quad \angle \mathrm{Y}=90^{\circ} \). If \( \mathrm{XY}=a^{2}-\mathrm{b}^{2} \) and \( \mathrm{YZ}=2 a b \), find \( \mathrm{XZ} .(a>b>0) \).
- In Fig. 6.41, if \( \mathrm{AB} \| \mathrm{DE}, \angle \mathrm{BAC}=35^{\circ} \) and \( \angle \mathrm{CDE}=53^{\circ} \), find \( \angle \mathrm{DCE} \)."\n
- In Fig. 6.32, if \( \mathrm{AB} \| \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ} \) and \( \angle \mathrm{PRD}=127^{\circ} \), find \( x \) and \( y \)."\n
- In Fig. \( 6.40, \angle \mathrm{X}=62^{\circ}, \angle \mathrm{XYZ}=54^{\circ} \). If \( \mathrm{YO} \) and \( Z \mathrm{O} \) are the bisectors of \( \angle \mathrm{XYZ} \) and \( \angle \mathrm{XZY} \) respectively of \( \triangle \mathrm{XYZ} \) find \( \angle \mathrm{OZY} \) and \( \angle \mathrm{YOZ} \)."\n
- Bisectors of angles \( \mathrm{A}, \mathrm{B} \) and \( \mathrm{C} \) of a triangle \( \mathrm{ABC} \) intersect its circumcircle at \( \mathrm{D}, \mathrm{E} \) and Frespectively. Prove that the angles of the triangle \( \mathrm{DEF} \) are \( 90^{\circ}-\frac{1}{2} \mathrm{~A}, 90^{\circ}-\frac{1}{2} \mathrm{~B} \) and \( 90^{\circ}-\frac{1}{2} \mathrm{C} \).
- \( \mathrm{ABC} \) is a right angled triangle in which \( \angle \mathrm{A}=90^{\circ} \) and \( \mathrm{AB}=\mathrm{AC} \). Find \( \angle \mathrm{B} \) and \( \angle \mathrm{C} \).
- Construct a triangle \( \mathrm{XYZ} \) in which \( \angle \mathrm{Y}=30^{\circ}, \angle \mathrm{Z}=90^{\circ} \) and \( \mathrm{XY}+\mathrm{YZ}+\mathrm{ZX}=11 \mathrm{~cm} \).
- In Fig. 6.30, if \( \mathrm{AB} \| \mathrm{CD} \), EF \( \perp \mathrm{CD} \) and \( \angle \mathrm{GED}=126^{\circ} \), find \( \angle \mathrm{AGE}, \angle \mathrm{GEF} \) and \( \angle \mathrm{FGE} \)."\n
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} \). If \( 2 \angle \mathrm{P}=3 \angle \mathrm{Q} \) and \( \angle C=100^{\circ} \), find \( \angle B \).
- In figure below, A, B, C and D are four points on a circle. \( \mathrm{AC} \) and \( \mathrm{BD} \) intersect at a point \( \mathrm{E} \) such that \( \angle \mathrm{BEC}=130^{\circ} \) and \( \angle \mathrm{ECD}=20^{\circ} \). Find \( \angle \mathrm{BAC} \)."\n
- In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is an altitude. If \( \mathrm{BM}=\sqrt{30} \) and \( \mathrm{CM}=3 \), find \( \mathrm{AC} \).
- In \( \triangle \mathrm{ABC}, \angle \mathrm{B}=90^{\circ} \) and \( \mathrm{BM} \) is a median. If \( \mathrm{AB}=15 \) and \( \mathrm{BC}=20 \), find \( \mathrm{BM} \).
Kickstart Your Career
Get certified by completing the course
Get Started