- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In Fig 4, a circle is inscribed in an equilateral triangle $\vartriangle ABC$ of side $12\ cm$. Find the radius of inscribed circle and the area of the shaded region. [$Use\ \pi =3.14\ and\ \sqrt{3} =1.73$].
"
Given: Fig 4, an equilateral triangle ABC of side 12 cm, and a circle inscribed in the given triangle.
To do: To find the radius of inscribed circle and the area of the shaded region.
Solution:

It is given that $\vartriangle ABC$ is an equilateral triangle of side 12 cm.
$\therefore AB=BC=CA$
Join $OA,\ OB$ and $OC$
Draw $OP \perp BC$
$OQ\perp AC$
$OR \perp AB$
Let the radius of the circle be $r\ cm$.
$OR=OP=OQ=r$
In $\vartriangle AOB$,
AB is the base and OR is the height of the $\vartriangle AOB$,
$\therefore$ Area of $\vartriangle AOB$,$A_{1} =\frac{1}{2} \times base\times height$
$\Rightarrow A_{1} =\frac{1}{2} \times AB\times r$
$\Rightarrow A_{1} =\frac{1}{2} \times 12\times r$
$\Rightarrow A_{1} =6r$
similarly areas of $\vartriangle AOC$ and $\vartriangle BOC$ are:
$A_{2} =6r$
$A_{3} =6r$
Area of $\vartriangle ABC=\frac{1}{2} \times sin\theta \times ( side)^{2}$
$=\frac{1}{2} \times sin60^{o}\times 12\times 12$
$=\frac{1}{2} \times \frac{\sqrt{3}}{2} \times 144$
$=36\sqrt{3} \ cm^{2}$
Area of $\vartriangle ABC=$Area of $\vartriangle AOB+$Area of $\vartriangle AOC+$Area of $\vartriangle BOC$
$\Rightarrow 6r+6r+6r=36\sqrt{3}$
$\Rightarrow 18r=36\sqrt{3}$
$\Rightarrow r=\frac{36\sqrt{3}}{18}$
$\Rightarrow r=2\sqrt{3} \ cm$
Area of the circle$=\pi r^{2}$
$=\pi( 2\sqrt{3})^{2}$
$=12\pi \ cm^{2}$
Area of the shaded region$=$Area of $\vartriangle ABC-$Area of the circle
$=\ 36\sqrt{3} -12\pi$
$=( 36\times 1.73-12\times 3.14)$
$=( 62.28-37.68)$
$=24.6\ cm^{2}$
Therefore, The area of the shaded region is $24.6\ cm^{2}$ .
Advertisements