"
">

# In fig. 3, a square OABC is inscribed in a quadrant OPBQ of a circle. If $OA\ =\ 20\ cm$, find the area of the shaded region $( Use\ \pi =\ 3.14)$. "

Given: A square OABC inscribing a quadrant OPBQ. $OA=20\ cm$.

To do: To find the area of shaded region.

Solution:

Here as shown in fig, OABC is a square and $OA=AB=BC=CA=20\ cm$

let us join OB.

now in $\vartriangle OAB$,

$OB^{2} =OA^{2} +AB^{2}$

$\Rightarrow \ OB^{2} =20^{2} +20^{2}$

$\Rightarrow OB^{2} =400+400$

$\Rightarrow OB=\sqrt{800}$

$\Rightarrow OB=20\sqrt{2}$

Area of the given quadrant, $A_{1} =\frac{\theta }{360^{o}} \times \pi r^{2}$

$A_{1} =\frac{90^{o}}{360^{o} } \times 3.14\times \left( 20\sqrt{2}\right)^{2}$

$\Rightarrow A_{1} =\frac{1}{4} \times 3.14\times 800$

$\Rightarrow A_{1} =628cm^{2}$

Area of the square $A_{2} =( side)^{2}$

$\Rightarrow A_{2} =20\times 20$

$\Rightarrow A_{2} =400cm^{2}$

Area of the shaded region, $A=$Area of the quadrant, $A_{1} -$Area of the square, $A_{2}$

$A=628-400$

$\Rightarrow A=228cm^{2}$

Therefore, area of the shaded region is $228cm^{2}$ .

Updated on: 10-Oct-2022

30 Views 