- Trending Categories
- Data Structure
- Networking
- RDBMS
- Operating System
- Java
- MS Excel
- iOS
- HTML
- CSS
- Android
- Python
- C Programming
- C++
- C#
- MongoDB
- MySQL
- Javascript
- PHP
- Physics
- Chemistry
- Biology
- Mathematics
- English
- Economics
- Psychology
- Social Studies
- Fashion Studies
- Legal Studies

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

# In an A.P. the sum of $n$ terms is $5n^2âˆ’5n$. Find the $10^{th}$ term of the A.P.

**Given:**In an A.P. the sum of $n$ terms is $5n^2-5n$.

**To do:**To find the $10^{th}$ term of the A.P.

**Solution:**

Sum of the $n$ terms $=5n^2-5n$

$\because S_n=\frac{n}{2}( 2a+( n-1)d)$, where $a$ is the first term.

$S_1=$ Sum of $1$ term $=5-5=0$

$\therefore a_1=0\ .......(1)$

$S_2=$ Sum of $2$ terms $=5( 2)^2-5( 2)=10$

$\therefore a_1+a_2=10......( 2)$

Solving $( 1)$ and $( 2)$

$a_2=10$

$\therefore a_2=10$

$a_n=a+(n-1)d$

$\therefore a_1+d=10$

$\Rightarrow 0+d=10$

$\Rightarrow d=10$

$\therefore a_{10}=a+9d$

$=0+9(10)=90$

$\therefore a_{10}=90$

Thus, $10^{th}$ term of the A.P. is $90$.

Advertisements