- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
In a magic square each row, column and diagonals have the same sum. Check which of the following is a magic square.$( i)$.
$5$ | $-1$ | $-4$ |
$-5$ | $-2$ | $7$ |
$0$ | $3$ | $-3$ |
1 | −10 | 0 |
−4 | −3 | −2 |
−6 | 4 | −7 |
Solution:
Let us check both the squares to find the magic square.
In sqaure $( i)$:
$5$ | $-1$ | $-4$ |
$-5$ | $-2$ | $7$ |
$0$ | $3$ | $-3$ |
Let us find the sum of each row, column and diagonal:
In first row: $5-1-4=0$
In second row: $-5-2+7=0$
In third row: $0+3-3=0$
In first column: $5-5+0=0$
In second column: $-1-2+3=0$
In third row: $-4+7-3=0$
In first diagonal: $5-2-3=0$
In second diagonal: $0-2-4=-6$
Here, sum of second diagonals values is different.
Thus, square $( i)$ is not a magic square.
In square $( ii)$:
$1$ | $-10$ | $0$ |
$-4$ | $-3$ | $-2$ |
$-6$ | $4$ | $-7$ |
In first row: $1-10+0=-9$
In second row: $-4-3-2=-9$
In third row: $-6+4-7=-9$
In first column: $1-4-6=-9$
In second column: $-10-3+4=-9$
In third column: $0-2-7=-9$
In first diagonal: $1-3-7=-9$
In second diagonal: $-6-3+0=-9$
Here, sum of values of each row, column and diagonals is the same.
Thus, square $( ii)$ is a magic square.
- Related Articles
- In a magic square each row, column, and diagonal have the same sum. Check which of the following is a magic square.
- Simplify (i) +7 + 1 - 3 + 4 -2 - 5 + 7 - 2 + 1 -6 + 5(ii)+2 - 3 + 2 -5 + 1 - 3 + 8 - 4 + 3
- Amarge the following in descending order.(i) $\frac{2}{9}, \frac{2}{3} \cdot \frac{8}{21} $(ii) $\frac{1}{5}, \frac{3}{7}+\frac{7}{10} $In a magic square"
- In a “magic square”, the sum of the numbers in each row, in each column and along the diagonals is the same. Is this a magic square?
- Name the type of quadrilateral formed, if any, by the following points, and give reasons for your answer.(i) $(-1, -2), (1, 0), (-1, 2), (-3, 0)$(ii) $(-3, 5), (3, 1), (0, 3), (-1, -4)$(iii) $(4, 5), (7, 6), (4, 3), (1, 2)$
- Which is greater in each of the following:$(i)$. $\frac{2}{3},\ \frac{5}{2}$$(ii)$. $-\frac{5}{6},\ -\frac{4}{3}$$(iii)$. $-\frac{3}{4},\ \frac{2}{-3}$$(iv)$. $-\frac{1}{4},\ \frac{1}{4}$$(v)$. $-3\frac{2}{7\ },\ -3\frac{4}{5}$
- Observe the following pattern$1 + 3 = 2^2$$1 + 3 + 5 = 3^2$$1+3 + 5 + 7 = 4^2$and write the value of $1 + 3 + 5 + 7 + 9 +…………$ upto $n$ terms.
- How quickly can you do this? Fill appropriate sign. ( '')(a) \( \frac{1}{2} \square \frac{1}{5} \)(b) \( \frac{2}{4} \square \frac{3}{6} \)(c) \( \frac{3}{5} \square \frac{2}{3} \)(d) \( \frac{3}{4} \square \frac{2}{8} \)(e) \( \frac{3}{5} \square \frac{6}{5} \)(f) \( \frac{7}{9} \square \frac{3}{9} \)(g) \( \frac{1}{4} \square \frac{2}{8} \)(h) \( \frac{6}{10} \square \frac{4}{5} \)(i) \( \frac{3}{4} \square \frac{7}{8} \)(j) \( \frac{6}{10} \square \frac{3}{5} \)(k) \( \frac{5}{7} \square \frac{15}{21} \)
- Following data gives the number of children in 41 families:$1, 2, 6, 5, 1, 5, 1, 3, 2, 6, 2, 3, 4, 2, 0, 0, 4, 4, 3, 2, 2, 0, 0, 1, 2, 2, 4, 3, 2, 1, 0, 5, 1, 2, 4, 3, 4, 1, 6, 2, 2.$Represent it in the form of a frequency distribution.
- Compare the fractions and put an appropriate sign.(a) \( \frac{3}{6} \square \frac{5}{6} \)(b) \( \frac{1}{7} \square \frac{1}{4} \)(c) \( \frac{4}{5} \square \frac{5}{5} \)(d) \( \frac{3}{5} \square \frac{3}{7} \)
- Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- Find the number from each of the following expanded forms:$(a)$. $8\times10^4+6\times10^3+0\times10^2+4\times10^1+5\times10^0$$(b)$. $4\times10^4+5\times10^3+3\times10^2+2\times10^0$$(c)$. $3\times10^4+7\times10^2+5\times10^0$$(d)$. $9\times10^5+2\times10^2+3\times10^1$
- Find the area of the triangle whose vertices are:(i) $(2, 3), (-1, 0), (2, -4)$(ii) $(-5, -1), (3, -5), (5, 2)$
- Multiply the following fractions:(i) $\frac{2}{5}\times5\frac{1}{4}$(ii) $6\frac{2}{5}\times\frac{7}{9}$(iii) $\frac{3}{2}\times5\frac{1}{3}$(iv) $\frac{5}{6}\times2\frac{3}{7}$(v) $3\frac{2}{5}\times\frac{4}{7}$(vi) $2\frac{3}{5}\times3$(vii) $3\frac{4}{7}\times\frac{3}{5}$
- Write the following rational numbers in ascending order:$(i)$. $\frac{-3}{5},\ \frac{-2}{5},\ \frac{-1}{5}$$(ii)$. $\frac{1}{3},\ \frac{-2}{9},\ \frac{-4}{3}$$(iii)$. $\frac{-3}{7},\ \frac{-3}{2},\ \frac{-3}{4}$
