If $ x=a^{m+n}, y=a^{n+1} $ and $ z=a^{l+m} $, prove that $ x^{m} y^{n} z^{l}=x^{n} y^{l} z^{m} $
Given:
\( a=x^{m+n} y^{l}, b=x^{n+l} y^{m} \) and \( c=x^{l+m} y^{n} \)
To do:
We have to prove that \( x^{m} y^{n} z^{l}=x^{n} y^{l} z^{m} \)
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
Therefore,
LHS $=x^{m} y^{n} z^{l}$
$=a^{(m+n) m} \times a^{(n+l) n} \times a^{(l+m)l}$
$=a^{m^{2}+m n} \times a^{n^{2}+n l} \times a^{l^{2}+m l}$
$=a^{m^{2}+n^{2}+l^{2}+m n+n l+l m}$
RHS $=x^{n} y^{l} z^{m}$
$=(a^{m+n})^{n} \times (a^{n+l})^{l} \times (a^{l+m})^{m}$
$=a^{m n+n^{2}} \times a^{n l+l^{2}} \times a^{l m+m^{2}}$
$=a^{m n+n^{2}+n l+l^{2}+l m+m^{2}}$
$=a^{l^{2}+m^{2}+n^{2}+l m+m n+n l}$
LHS $=$ RHS
Hence proved.
- Related Articles
- If \( a=x^{m+n} y^{l}, b=x^{n+l} y^{m} \) and \( c=x^{l+m} y^{n} \), prove that \( a^{m-n} b^{n-1} c^{l-m}=1 . \)
- Simplify:\( \sqrt[lm]{\frac{x^{l}}{x^{m}}} \times \sqrt[m n]{\frac{x^{m}}{x^{n}}} \times \sqrt[n l]{\frac{x^{n}}{x^{l}}} \)
- If $l, m, n$ are three lines such that $l \parallel m$ and $n \perp l$, prove that $n \perp m$.
- Find x, y, z that satisfy 2/n = 1/x + 1/y + 1/z in C++
- In the figure, $l, m$ and $n$ are parallel lines intersected by transversal $p$ at $X, Y$ and $Z$ respectively. Find $\angle l, \angle 2$ and $\angle 3$."\n
- Find $x,\ y$ and $z$."\n
- Add the following monomials:(i) \( 8 x y, 2 x y, 9 x y \)\( \left(iv{}\right)-40 m n,-30 m n, 18 m n \)
- Construct PDA for L = {0n1m2(n+m) | m,n >=1}
- Find the value of x, if $l \parallel m$. "\n
- Find the numerical value of \( P: Q \) where \( \mathrm{P}=\left(\frac{x^{m}}{x^{n}}\right)^{m+n-l} \times\left(\frac{x^{n}}{x^{l}}\right)^{n+l-m} \times\left(\frac{x^{l}}{x^{m}}\right)^{l+m-n} \) and\( \mathrm{Q}=\left(x^{1 /(a-b)}\right)^{1 /(a-c)} \times\left(x^{1 /(b-c)}\right)^{1 /(b-a)} \times\left(x^{1 /(c-a)}\right)^{1 /(c-b)} \)where \( a, b, c \) being all different.A. \( 1: 2 \)B. \( 2: 1 \)C. \( 1: 1 \)D. None of these
- In \( \triangle \mathrm{XYZ} \), the bisector of \( \angle X \) intersects \( Y Z \) at \( M \). If \( X Y=8, X Z=6 \) and \( M Z=4.8 \), find YZ.
- Obtain the condition for the following system of linear equations to have a unique solution$a x+b y=c$$l x+m y=n$
- Find the values of x, y, z."\n
- In the figure, \(P A \) and \( P B \) are tangents from an external point \( P \) to a circle with centre \( O \). \( L N \) touches the circle at \( M \). Prove that \( P L+L M=P N+M N \)."\n
- Construct Turing machine for L = {an bm a(n+m) - n,m≥1} in C++
Kickstart Your Career
Get certified by completing the course
Get Started