If $\vartriangle ABC\sim\vartriangle RPQ,\ AB=3\ cm,\ BC=5\ cm,\ AC=6\ cm,\ RP=6\ cm\ and\ PQ=10\ cm$, then find $QR$.
Given: $\vartriangle ABC\sim\vartriangle RPQ,\ AB=3\ cm,\ BC=5\ cm,\ AC=6\ cm,\ RP=6\ cm\ and\ PQ=10\ cm$ .
To do: To find $QR$.
Solution:
$\because\ \vartriangle ABC\sim\vartriangle PQR$
If two triangles are similar, then its corresponding sides are proportional.
$\frac{RP}{AB}=\frac{PQ}{BC}=\frac{QR}{AC}$
$\Rightarrow \frac{6}{3}=\frac{10}{5}=\frac{QR}{6}$
$\Rightarrow \frac{QR}{6}=\frac{6}{3}$
$\Rightarrow QR=\frac{6\times6}{3}$
$\Rightarrow QR=12$
Thus $QR=12\ cm$.
- Related Articles
- If $\vartriangle ABC \sim\vartriangle DEF$, $AB = 4\ cm,\ DE = 6\ cm,\ EF = 9\ cm$ and $FD = 12\ cm$, find the perimeter of $ABC$.
- If $\vartriangle ABC\sim\vartriangle QRP$, $\frac{ar( \vartriangle ABC)}{( \vartriangle QRP)}=\frac{9}{4}$, and $BC=15\ cm$, then find $PR$.
- Construct a $\vartriangle ABC$ such that $AB=6$, $AC=5\ cm$ and the base $B C$ is $4\ cm$.
- Construct $\vartriangle ABC$ in which $BC=7\ cm,\ \angle B=75^{o}$ and $AB+AC=12\ cm$.
- In $\triangle P Q R$, if $PQ=10\ cm$, $QR=8\ cm$ and $PR=6\ cm$ then find $\angle R=?$
- $D$ and $E$ are respectively the midpoints on the sides $AB$ and $AC$ of a $\vartriangle ABC$ and $BC = 6\ cm$. If $DE || BC$, then find the length of $DE ( in\ cm)$.
- Construct $∆ABC$ such that $AB=2.5\ cm$, $BC=6\ cm$ and $AC=6.5\ cm$. Measure $\angle B$.
- In a $Δ\ ABC$, $P$ and $Q$ are the points on sides $AB$ and $AC$ respectively, such that $PQ\ ∥\ BC$. If $AP\ =\ 2.4\ cm$, $AQ\ =\ 2\ cm$, $QC\ =\ 3\ cm$ and $BC\ =\ 6\ cm$. Find $AB$ and $PQ$. "\n
- Construct a triangle $ABC$ such that $BC = 6\ cm, AB = 6\ cm$ and median $AD = 4\ cm$.
- Construct a $\vartriangle ABC$ in which $AB\ =\ 6\ cm$, $\angle A\ =\ 30^{o}$ and $\angle B\ =\ 60^{o}$, Construct another $\vartriangle AB’C’$ similar to $\vartriangle ABC$ with base $ AB’\ =\ 8\ cm$.
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{ZYX} . \) If \( \mathrm{AB}=3 \mathrm{~cm}, \quad \mathrm{BC}=5 \mathrm{~cm} \), \( \mathrm{CA}=6 \mathrm{~cm} \) and \( \mathrm{XY}=6 \mathrm{~cm} \), find the perimeter of \( \Delta \mathrm{XYZ} \).
- Draw a triangle ABC with $BC = 6\ cm, AB = 5\ cm$ and $\vartriangle ABC=60^{o}$. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of the ABC.
- Given $\vartriangle ABC\ \sim\vartriangle PQR$, If $\frac{AB}{PQ}=\frac{1}{3}$, then find $\frac{ar( \vartriangle ABC)}{ar( \vartriangle PQR)}$.
- \( \triangle \mathrm{ABC} \sim \triangle \mathrm{PQR} . \quad \) If \( \quad \mathrm{AB}+\mathrm{BC}=12 \mathrm{~cm} \) \( \mathrm{PQ}+\mathrm{QR}=15 \mathrm{~cm} \) and \( \mathrm{AC}=8 \mathrm{~cm} \), find \( \mathrm{PR} \).
- In Figure 4, a $\vartriangle ABC$ is drawn to circumscribe a circle of radius $3\ cm$, such that the segments BD and DC are respectively of lengths $6\ cm$ and $9\ cm$. If the area of $\vartriangle ABC$ is $54\ cm^{2}$, then find the lengths of sides AB and AC."\n
Kickstart Your Career
Get certified by completing the course
Get Started