If the sum of first four terms of an A.P. is 40 and that of first 14 terms is 280. Find the sum of its first n terms.
Given:
The sum of first four terms of an A.P. is 40 and that of first 14 terms is 280.
To do:
We have to find the sum of its first $n$ terms.
Solution:
Let the first term be $a$ and the common differnce be $d$.
We know that,
Sum of $n$ terms$ S_{n} =\frac{n}{2}(2a+(n-1)d)$
$S_{4}=\frac{4}{2}[2(a)+(4-1)d]$
$40=2(2a+3d)$
$20=2a+3d$
$2a=20-3d$......(i)
$S_{14}=\frac{14}{2}[2(a)+(14-1)d]$
$280=7(2a+13d)$
$40=2a+13d$
$20-3d+13d=40$ (From (i))
$10d=40-20$
$d=\frac{20}{10}$
$d=2$
This implies,
$2a=20-3(2)$
$2a=20-6$
$a=\frac{14}{2}$
$a=7$
The sum of $n$ terms $S_n=\frac{n}{2}(2a+(n-1)d)$
$S_n=\frac{n}{2}[2(7)+(n-1)2]$
$=n(7+n-1)$
$=n(n+6)$
$=n^2+6n$
Hence, the sum of $n$ terms is $n^2+6n$.
- Related Articles
- If the sum of first 7 terms of an AP is 49 and that of 17 terms is 289, find the sum of first $n$ terms.
- If sum of first 6 terms of an AP is 36 and that of the first 16 terms is 256 , find the sum of first 10 terms.
- The sum of first 7 terms of an AP is 49 and that of 17 terms is 289. Find the sum of first n terms .
- If 12th term of an A.P. is $-13$ and the sum of the first four terms is 24, what is the sum of first 10 terms?
- Sum of the first 14 terms of an A.P. is 1505 and its first term is 10. Find its 25th term.
- The sum of the first five terms of an AP and the sum of the first seven terms of the same AP is 167. If the sum of the first ten terms of this AP is 235 , find the sum of its first twenty terms.
- If the sum of first $n$ terms of an A.P. is $n^2$, then find its 10th term.
- In an A.P., the sum of first ten terms is -150 and the sum of its next ten terms is -550. Find the A.P.
- The sum of first 6 terms of an \( \mathrm{AP} \) is 36 and the sum of its first 16 terms is 256. Find the sum of first 10 terms of this \( A P \).
- In an AP of 50 terms, the sum of first 10 terms is 210 and the sum of its last 15 terms is 2565. Find the A.P.
- If the sum of the first $n$ terms of an A.P. is $4n – n^2$, what is the first term? What is the sum of first two terms? What is the second term? Similarly, find the third, the tenth and the $n$th terms.
- If the sum of the first $2n$ terms of the A.P. $2,\ 5,\ 8\ ..$ is equal to the sum of the first $n$ terms of the A.P. $57,\ 59,\ 61,\ ...$, then find $n$
- If the sum of 7 terms of an A.P. is 49 and that of 17 terms is 289, find the sum of n terms.
- The sum of first $n$ terms of an A.P. whose first term is 8 and the common difference is 20 is equal to the sum of first $2n$ terms of another A.P. whose first term is $-30$ and common difference is 8. Find $n$.
- Find the sum of first 51 terms of an A.P. whose second and third terms are 14 and 18 respectively.
Kickstart Your Career
Get certified by completing the course
Get Started