If the points $P, Q (x, 7), R, S (6, y)$ in this order divide the line segment joining $A (2, p)$ and $B (7,10)$ in 5 equal parts, find $x, y$ and $p$.
Given:
Points $P, Q (x, 7), R, S (6, y)$ in this order divide the line segment joining $A (2, p)$ and $B (7,10)$ in 5 equal parts.
To do:
We have to find $x, y$ and $p$.
Solution:
Points $P, Q (x, 7), R, S (6, y)$ in order divide a line segment joining $A (2, p)$ and $B (7, 10)$ in 5 equal parts.
This implies,
$AP = PQ = QR = RS = SB$ $Q$ is the mid-point of $A$ and $S$
Using mid-point formula, we get,
\( x=\frac{2+6}{2} \)
\( =\frac{8}{2} \)
\( =4 \) \( 7=\frac{y+p}{2} \)
\( \Rightarrow y+p=14 \)......(i) \( \mathrm{S} \) divides \( \mathrm{QB} \) in the ratio $2: 1$.
Using the section formula, if a point $( x,\ y)$ divides the line joining the points $( x_1,\ y_1)$ and $( x_2,\ y_2)$ in the ratio $m:n$, then
$(x,\ y)=( \frac{mx_2+nx_1}{m+n},\ \frac{my_2+ny_1}{m+n})$
This implies,
\( y=\frac{2 \times 10+1 \times 7}{2+1} \)
\( =\frac{20+7}{3} \)
\( =\frac{27}{3} \)
\( =9 \) This implies,
\( 9+p=14 \)
\( p=14-9 \)
\( p=5 \)
The values of $x, y$ and $p$ are $4, 9$ and $5$ respectively.
Related Articles Points $P, Q, R$ and $S$ divide the line segment joining the points $A (1, 2)$ and $B (6, 7)$ in 5 equal parts. Find the coordinates of the points $P, Q$ and $R$.
If $R\ ( x,\ y)$ is a point on the line segment joining the points $P\ ( a,\ b)$ and $Q\ ( b,\ a)$, then prove that $a+b=x+y$
If $R (x, y)$ is a point on the line segment joining the points $P (a, b)$ and $Q (b, a)$, then prove that $x + y = a + b$.
In \( \Delta X Y Z, X Y=X Z \). A straight line cuts \( X Z \) at \( P, Y Z \) at \( Q \) and \( X Y \) produced at \( R \). If \( Y Q=Y R \) and \( Q P=Q Z \), find the angles of \( \Delta X Y Z \).
If $P( 2,p)$ is the mid-point of the line segment joining the points $A( 6,-5)$ and $B( -2,11)$. Find the value of $p$.
Find the value(s) of \( p \) and \( q \) for the following pair of equations:\( 2 x+3 y=7 \) and \( 2 p x+p y=28-q y \),if the pair of equations have infinitely many solutions.
The line segment joining the points $(3, -4)$ and $(1, 2)$ is trisected at the points $P$ and $Q$. If the coordinates of $P$ and $Q$ are $(p, -2)$ and $(\frac{5}{3}, q)$ respectively. Find the values of $p$ and $q$.
A line intersects the y-axis and x-axis at the points P and Q respectively. If $( 2,\ -5)$ is the mid-point then find the coordinates of P and Q.
Let P and Q be the points of trisection of the line segment joining the points $A( 2,\ -2)$ and $B( -7,\ 4)$ such that P is nearer to A. Find the coordinates of P and Q.
In what ratio does the point $( \frac{24}{11} ,\ y)$ divide the line segment joining the points $P( 2,\ -2)$ and $( 3,\ 7)$ ?Also find the value of $y$.
Solve the following pairs of linear equations: (i) \( p x+q y=p-q \)$q x-p y=p+q$(ii) \( a x+b y=c \)$b x+a y=1+c$,b>(iii) \( \frac{x}{a}-\frac{y}{b}=0 \)$a x+b y=a^{2}+b^{2}$(iv) \( (a-b) x+(a+b) y=a^{2}-2 a b-b^{2} \)$(a+b)(x+y)=a^{2}+b^{2}$(v) \( 152 x-378 y=-74 \)$-378 x+152 y=-604$.
Points $P$ and $Q$ trisect the line segment joining the points $A(-2,0)$ and $B(0,8)$ such that $P$ is near to $A$. Find the coordinates of $P$ and $Q$.
Find \( p(0), p(1) \) and \( p(2) \) for each of the following polynomials:(i) \( p(y)=y^{2}-y+1 \)(ii) \( p(t)=2+t+2 t^{2}-t^{3} \)(iii) \( p(x)=x^{3} \)(iv) \( p(x)=(x-1)(x+1) \)
The line segment joining the points $A( 2,\ 1)$ and $B( 5,\ -8)$ is tri-sected at the points P and Q such that P is nearer to A. If P also lies on the line given by $2x - y = 0$, find the value of $k$.
If p, q are real and p≠q, then show that the roots of the equation $(p-q)x^2+5(p+q)x-2(p-q)=0$ are real and unequal.
Kickstart Your Career
Get certified by completing the course
Get Started