If the points $(2, 1)$ and $(1, -2)$ are equidistant from the point $(x, y)$, show that $x + 3y = 0$.


Given:

The points $(2, 1)$ and $(1, -2)$ are equidistant from the point $(x, y)$.

To do:

We have to show that $x + 3y = 0$.

Solution:

We know that,

The distance between two points \( \mathrm{A}\left(x_{1}, y_{1}\right) \) and \( \mathrm{B}\left(x_{2}, y_{2}\right) \) is \( \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \).

Therefore,

The distance between $(2,1)$ and \( (x, y) \) \( =\sqrt{(x-2)^{2}+(y-1)^{2}} \)

The distance between $(1,-2)$ and \( (x, y) \) \( =\sqrt{(x-1)^{2}+(y+2)^{2}} \)

The points $(2,1)$ and $(1,-2)$ are equidistant from \( (x, y) \)

\( \therefore \sqrt{(x-2)^{2}+(y-1)^{2}}=\sqrt{(x-1)^{2}+(y+2)^{2}} \)

Squaring on both sides, we get,

\( \Rightarrow(x-2)^{2}+(y-1)^{2}=(x-1)^{2}+(y+2)^{2} \) 

\( \Rightarrow x^{2}-4 x+4+y^{2}-2 y+1=x^{2}-2 x+1+y^{2}+4y+4 \)

\( \Rightarrow x^{2}-4 x+y^{2}-2 y+5-x^{2}+2 x-y^{2}-4 y-5=0 \)

\( \Rightarrow-2 x-6 y=0 \)

\( \Rightarrow -2(x+3 y)=0 \)

\( \Rightarrow x+3 y=0 \)

Hence proved.

Tutorialspoint
Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

41 Views

Kickstart Your Career

Get certified by completing the course

Get Started
Advertisements