- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If the points $(-2, -1), (1, 0), (x, 3)$ and $(1, y)$ form a parallelogram, find the values of $x$ and $y$.
The points $(-2, -1), (1, 0), (x, 3)$ and $(1, y)$ form a parallelogram.
To do:
We have to find the values of $x$ and $y$.
Solution:
Let the vertices of the parallelogram be $A(-2, -1), B(1, 0), C(x, 3)$ and $D(1, y)$ and let the diagonals $AC$ and $BD$ bisect each other at $O$.
\( \mathrm{O} \) is the mid-point of \( \mathrm{AC} \).
This implies, using mid-point formula,
The coordinates of \( \mathrm{O}=(\frac{-2+x}{2}, \frac{-1+3}{2}) \)
\( =(\frac{-2+x}{2}, 1) \)
\( \mathrm{O} \) is also the mid-point of \( \mathrm{BD} \).
This implies,
The coordinates of \( \mathrm{O}=(\frac{1+1}{2}, \frac{0+y}{2}) \)
\( =(1, \frac{y}{2})
Therefore,
\( 1=\frac{-2+x}{2} \) and \( 1=\frac{y}{2} \)
\( \Rightarrow -2+x=2(1) \) and \( 1(2)=y \)
\( \Rightarrow x=2+2=4 \) and \( y=2 \)
The values of $x$ and $y$ are $4$ and $2$ respectively.
- Related Articles
- 1. Factorize the expression \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. Factorize the expression \( \mathrm{xy}-\mathrm{x}-\mathrm{y}+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- Find a relation between $x$ and $y$, if the points $(x, y), (1, 2)$ and $(7, 0)$ are collinear.
- If $\frac{x+1}{y} = \frac{1}{2}, \frac{x}{y-2} = \frac{1}{2}$, find x and y.
- If $(x, y)$ be on the line joining the two points $(1, -3)$ and $(-4, 2)$, prove that $x + y + 2 = 0$.
- If the points $(2, 1)$ and $(1, -2)$ are equidistant from the point $(x, y)$, show that $x + 3y = 0$.
- Simplify: $\frac{x^{-3}-y^{-3}}{x^{-3} y^{-1}+(x y)^{-2}+y^{-1} x^{-3}}$.
- If $(1, 2), (4, y), (x, 6)$ and $(3, 5)$ are the vertices of a parallelogram taken in order, find $x$ and $y$.
- Solve the following pairs of equations:\( \frac{1}{2 x}-\frac{1}{y}=-1 \)\( \frac{1}{x}+\frac{1}{2 y}=8, x, y ≠ 0 \)
- If \( 2^{x}=3^{y}=6^{-z} \), show that \( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0 \).
- Find \( p(0), p(1) \) and \( p(2) \) for each of the following polynomials:(i) \( p(y)=y^{2}-y+1 \)(ii) \( p(t)=2+t+2 t^{2}-t^{3} \)(iii) \( p(x)=x^{3} \)(iv) \( p(x)=(x-1)(x+1) \)
- If \( x \) and \( 3 y \) vary inversely with each other and \( x=\frac{1}{3} \) when \( y=14 \), find \( y \), when \( x \) is \( \frac{1}{2} \).
- If $(2x-1,3y+1)$ and $(x+3,y-4)$ are equal ordered pairs. Find the values of $x$ and $y$.
- Find $25 x^{2}+16 y^{2}$, if $5 x+4 y=8$ and $x y=1$.
- Solve the following pairs of equations by reducing them to a pair of linear equations:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- A pair of linear equations which has a unique solution \( x=2, y=-3 \) is(A) \( x+y=-1 \)\( 2 x-3 y=-5 \)(B) \( 2 x+5 y=-11 \)\( 4 x+10 y=-22 \)(C) \( 2 x-y=1 \)\( 3 x+2 y=0 \)(D) \( x-4 y-14=0 \)\( 5 x-y-13=0 \)
