If the point $P (m, 3)$ lies on the line segment joining the points $A (−\frac{2}{5}, 6)$ and $B (2, 8)$, find the value of $m$.
Given:
The point $P (m, 3)$ lies on the line segment joining the points $A (−\frac{2}{5}, 6)$ and $B (2, 8)$.
To do:
We have to find the value of $m$.
Solution:
We know that,
If the points $A, B$ and $C$ are collinear then the area of $\triangle ABC$ is zero.
Let $A(-\frac{2}{5}, 6), P(m, 3)$ and $B(2, 8)$ be the vertices of $\triangle APB$.
Area of a triangle with vertices $(x_1,y_1), (x_2,y_2), (x_3,y_3)$ is given by,
Area of $\Delta=\frac{1}{2}[x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})]$
Therefore,
Area of triangle \( APB=\frac{1}{2}[-\frac{2}{5}(3-8)+m(8-6)+2(6-3)] \)
\( 0=\frac{1}{2}[-\frac{2}{5}(-5)+m(2)+2(3)] \)
\( 0(2)=(2+2m+6) \)
\( 0=8+2m \)
\( 2m=-8 \)
\( m=-4 \)
The value of $m$ is $-4$. 
- Related Articles
- If $P( 2,p)$ is the mid-point of the line segment joining the points $A( 6,-5)$ and $B( -2,11)$. Find the value of $p$.
- Find the ratio in which $P( 4,\ m)$ divides the line segment joining the points $A( 2,\ 3)$ and $B( 6,\ –3)$. Hence find $m$.
- Find the mid-point of the line segment joining the points $A ( -2,\ 8)$ and $B ( -6,\ -4)$.
- A point P divides the line segment joining the points$A( 3,\ -5) $ and $B( -4,\ 8)$ such that$\frac{AP}{PB} =\frac{K}{1}$ . if P lies on the line $x+y=0$, then find the value of K.
- A point $P$ divides the line segment joining the points $A (3, -5)$ and $B (-4, 8)$ such that $\frac{AP}{PB} = \frac{k}{1}$. If $P$ lies on the line $x + y = 0$, then find the value of $k$.
- Point $P( x,\ 4)$ lies on the line segment joining the points $A( -5,\ 8)$ and $B( 4,\ -10)$. Find the ratio in which point P divides the line segment AB. Also find the value of x.
- The line joining the points $(2, 1)$ and $(5, -8)$ is trisected at the points P and Q. If point P lies on the line $2x – y + k = 0$. Find the value of $k$.
- If$P\left(\frac{a}{2} ,4\right)$ is the mid-point of the line segment joining the points $A( -6,\ 5)$ and $( -2,\ 3)$, then the value of a is:$( A) \ -8$$( B) \ \ 3$$( C) \ -4$$( D) \ \ 44$
- Find the ratio in which the point \( \mathrm{P}\left(\frac{3}{4}, \frac{5}{12}\right) \) divides the line segment joining the points \( A \frac{1}{2}, \frac{3}{2} \) and B \( (2,-5) \).
- Point P divides the line segment joining the points $\displaystyle A( 2,1)$ and $\displaystyle B( 5,-8)$ such that $\displaystyle \frac{AP}{AB} =\frac{1}{3}$. If P lies on the line $\displaystyle 2x-y+k=0$, find the value of k.
- The mid-point $P$ of the line segment joining the points $A (-10, 4)$ and $B (-2, 0)$ lies on the line segment joining the points $C (-9, -4)$ and $D (-4, y)$. Find the ratio in which $P$ divides $CD$. Also, find the value of $y$.
- Find the distance of the point $(1, 2)$ from the mid-point of the line segment joining the points $(6, 8)$ and $(2, 4)$.
- Find the ratio in which point $P( x,\ 2)$ divides the line segment joining the points $A( 12,\ 5)$ and $B( 4,\ −3)$. Also find the value of $x$.
- $\frac{2 m}{3}+8=\frac{m}{2}-1$, find the value of $m$.
- The line segment joining the points $A( 2,\ 1)$ and $B( 5,\ -8)$ is tri-sected at the points P and Q such that P is nearer to A. If P also lies on the line given by $2x - y = 0$, find the value of $k$.
Kickstart Your Career
Get certified by completing the course
Get Started