If the additive inverse of the matrix $\displaystyle \begin{bmatrix}a-2 & b\\ 1 & 3\end{bmatrix}$ is $\displaystyle \begin{bmatrix}2 & 0\\ -1 & -3 \end{bmatrix}$. Find the values of a and b.
Given:
The additive inverse of the matrix $\displaystyle \begin{bmatrix} a-2 & b\\ 1 & 3 \end{bmatrix}$ is $\displaystyle \begin{bmatrix} 2 & 0\\ -1 & -3 \end{bmatrix}$.
To do:
We have to find the values of a and b.
Solution:
We know that,
Additive inverse of a matrix
$A=\begin{bmatrix}
a & b\\ c & d
\end{bmatrix}$ is
$-A=\begin{bmatrix}
-a & -b\\ -c & -d
\end{bmatrix}$.
Given,
A$=\begin{bmatrix}
a-2 & b\\ 1 & 3
\end{bmatrix}$
This implies,
$-A\ =\ \begin{bmatrix}
-( a-2) & -b\\ -1 & -3
\end{bmatrix}$
$=\begin{bmatrix}
2 & 0\\ -1 & -3
\end{bmatrix}$ (given)
Therefore,
$-( a-2) = 2$
$-a+2=2$
$a=0$
$-b=0$
$b=0$
The values of a and b are 0 and 0 respectively.
Related Articles If$\begin{bmatrix}x 3\\ 0 2y-x\end{bmatrix} +\begin{bmatrix}1 2\\ 0 -2\end{bmatrix} =\begin{bmatrix}4 5\\ 0 3\end{bmatrix}$.Find the value of x and y.
If $\displaystyle P\ =\ \begin{bmatrix}2 & 4\\ 3 & 5\end{bmatrix} \ and\ Q\ =\ \begin{bmatrix}-2 & 2\\ 4 & 1\end{bmatrix}$ , find the marix R such hat $P - Q + R$ is an Identity matrix.
If the matrix $\displaystyle \ \begin{bmatrix}a & 2b-c\\ 2a+d 2c-4\end{bmatrix}$ is a null matrix then find the values of a, b, c and d.
A trianglular plot of land has dimensions $\displaystyle\frac{3}{4}$ metres, $\displaystyle\frac{1}{4}$ metres, and $\displaystyle\frac{1}{2}$ metres. Find the perimeter of the triangular plot.
A Rectangular sheet of paper is $\displaystyle 12\frac{1}{2} \ cm\ $ and $\displaystyle 10\frac{2}{3} \ cm\ $ wide. Find its Perimeter.
If A= {0 , 1 , 2 , 3 , 4 , 5} and B = {2 , 4 , 6 , 8 , 10} then find $\displaystyle A\ \cup \ B\ and\ A\ \cap \ B$. Illustrate hem in venn diagram.
How many of the following 10 numbers are even integers?\[\begin{array}{rrrrr}0, & 1, & -2, & 3, & -1 \5.0, & -2.4, & 2 \times 2 . & -2 \times 3.5, & \frac{2}{2}\end{array}\]
Point P divides the line segment joining the points $\displaystyle A( 2,1)$ and $\displaystyle B( 5,-8)$ such that $\displaystyle \frac{AP}{AB} =\frac{1}{3}$. If P lies on the line $\displaystyle 2x-y+k=0$, find the value of k.
If \( x+1 \) is a factor of \( 2 x^{3}+a x^{2}+2 b x+1 \), then find the values of \( a \) and \( b \) given that \( 2 a-3 b=4 \).
Draw the following angles as per their types:$\displaystyle \begin{array}{{>{\displaystyle}l}} a) \ \angle LMN\ reflex\ angle.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ b) \ \angle y\ \ obtuse\ angle\ c) \ \ \angle XYZ\ complete\ angle\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ d) \ \angle 3\ reflex\ angle\end{array}$
Simplify the expression and find its values if $a=-1, b=-3$.$4 a^{2}-b^{2}+6 a^{2}-7 b^{2}$
If $a = 3$ and $b =-2$, find the values of:$a^a+ b^b$
If $a = 3$ and $b =-2$, find the values of:$a^b + b^a$
Find the value of \( a^{3}+b^{3}+3 a b^{2}+3 a^{2} b \) if \( a=2, b=-3 \).
If $a = 3$ and $b =-2$, find the values of:$(a+b)^{ab}$
Kickstart Your Career
Get certified by completing the course
Get Started