- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If points $( a,\ 0),\ ( 0,\ b)$ and $( x,\ y)$ are collinear, prove that $\frac{x}{a}+\frac{y}{b}=1$.
Given: Points $( a,\ 0),\ ( 0,\ b)$ and $( x,\ y)$ are collinear.
To do: To prove that $\frac{x}{a}+\frac{y}{b}=1$.
Solution:
Given that three points are collinear, $( a,\ 0),\ ( 0,\ b)$ and $( x,\ y)$.
$\because$ The points are collinear, area of triangle formed by these points should be equal to $0$.
$\frac{1}{2}[x_1( y_2-y_3)+x_2( y_3-y_1)+x_3( y_1-y_2)]=0$
$\frac{1}{2}[a[b-y]+0[x-0]+x(0-b)]=0$
$\Rightarrow ab-ay-bx=0$
$\Rightarrow ay+bx=ab$
$\Rightarrow \frac{ay}{ab}+\frac{bx}{ab}=\frac{ab}{ab}$ [On dividing both sides by $ab$]
$\Rightarrow \frac{y}{b}+\frac{x}{a}=1$
Hence proved.
- Related Articles
- Prove that the points $(a, 0), (0, b)$ and $(1, 1)$ are collinear if, $\frac{1}{a} + \frac{1}{b} = 1$.
- Find a relation between $x$ and $y$, if the points $(x, y), (1, 2)$ and $(7, 0)$ are collinear.
- If $\frac{x}{a}cos\theta+\frac{y}{b}sin\theta=1$ and $\frac{x}{a}sin\theta-\frac{y}{b}cos\theta=1$, prove that $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$.
- If \( 2^{x}=3^{y}=6^{-z} \), show that \( \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0 \).
- Solve the following system of equations by the method of cross-multiplication: $\frac{a^2}{x}-\frac{b^2}{y}=0$ $\frac{a^2b}{x}+\frac{b^2a}{y}=a+b, x, y≠0$
- If $a ≠ b ≠ 0$, prove that the points $(a, a^2), (b, b^2), (0, 0)$ are never collinear.
- Solve the following pairs of equations:\( \frac{x}{a}+\frac{y}{b}=a+b \)\( \frac{x}{a^{2}}+\frac{y}{b^{2}}=2, a, b ≠ 0 \)
- Solve the following pairs of equations:\( \frac{1}{2 x}-\frac{1}{y}=-1 \)\( \frac{1}{x}+\frac{1}{2 y}=8, x, y ≠ 0 \)
- Prove that\( \frac{1}{1+x^{a-b}}+\frac{1}{1+x^{b-a}}=1 \)
- If $\frac{x+1}{y} = \frac{1}{2}, \frac{x}{y-2} = \frac{1}{2}$, find x and y.
- If \( x=a \cos ^{3} \theta, y=b \sin ^{3} \theta \), prove that \( \left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=1 \)
- Prove that\( \frac{1}{1+x^{b-a}+x^{c-a}}+\frac{1}{1+x^{a-b}+x^{c-b}}+\frac{1}{1+x^{b-c}+x^{a-c}}=1 \)
- Solve the following pairs of linear equations: (i) \( p x+q y=p-q \)$q x-p y=p+q$(ii) \( a x+b y=c \)$b x+a y=1+c$,b>(iii) \( \frac{x}{a}-\frac{y}{b}=0 \)$a x+b y=a^{2}+b^{2}$(iv) \( (a-b) x+(a+b) y=a^{2}-2 a b-b^{2} \)$(a+b)(x+y)=a^{2}+b^{2}$(v) \( 152 x-378 y=-74 \)$-378 x+152 y=-604$.
- If the point $P (x, y)$ is equidistant from the points $A (5, 1)$ and $B (1,5)$, prove that $x = y$.
- If $(x, y)$ be on the line joining the two points $(1, -3)$ and $(-4, 2)$, prove that $x + y + 2 = 0$.

Advertisements