- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $\frac{cos\alpha}{cos\beta}=m$ and $\frac{cos\alpha}{sin\beta}=n$, then show that $( m^{2}+n^{2})cos^{2}\beta=n^{2}$.
Given: $\frac{cos\alpha}{cos\beta}=m$ and $\frac{cos\alpha}{sin\beta}=n$.
To do: To show that $( m^{2}+n^{2})cos^{2}\beta=n^{2}$.
Solution:
L.H.S.$=( m^{2}+n^{2})cos^{2}\beta$
$=( ( \frac{cos\alpha}{cos\beta})^{2}+( \frac{cos\alpha}{sin\beta})^{2})cos^{2}\beta$
$=( \frac{cos^{2}\alpha}{cos^{2}\beta}+\frac{cos^{2}\alpha}{sin^{2}\beta})cos^{2}\beta$
$=( \frac{cos^{2}\alpha.sin^{2}\beta+cos^{2}\alpha.cos^{2}\beta}{cos^{2}\beta.sin^{2}\beta})cos^{2}\beta$
$=cos^{2}\alpha( \frac{sin^{2}\beta+cos^{2}\beta}{cos^{2}\beta.sin^{2}\beta})cos^{2}\beta$
$=( \frac{cos^{2}\alpha}{sin^{2}\beta}.1.\frac{cos^{2}\beta}{cos^{2}\beta})$
$=\frac{cos^{2}\alpha}{sin^{2}\beta}$
$=n^{2}$
$=R.H.S.$
Hence, proved that $( m^{2}+n^{2})cos^{2}\beta=n^{2}$.
- Related Articles
- If \( \cos (\alpha+\beta)=0 \), then \( \sin (\alpha-\beta) \) can be reduced to(A) \( \cos \beta \)(B) \( \cos 2 \beta \)(C) \( \sin \alpha \)(D) \( \sin 2 \alpha \)
- Given $sin\alpha=\frac{\sqrt{3}}{2}$ and $cos\beta=0$, then find the value of $( \beta-\alpha)$.
- Given that: \( (1+\cos \alpha)(1+\cos \beta)(1+\cos \gamma)=(1-\cos \alpha)(1-\cos \beta)(1-\cos \gamma) \)Show that one of the values of each member of this equality is \( \sin \alpha \sin \beta \sin \gamma \)
- Given that \( \sin \alpha=\frac{1}{2} \) and \( \cos \beta=\frac{1}{2} \), then the value of \( (\alpha+\beta) \) is(A) \( 0^{\circ} \)(B) \( 30^{\circ} \)(C) \( 60^{\circ} \)(D) \( 90^{\circ} \)
- If \( a \cos \theta+b \sin \theta=m \) and \( a \sin \theta-b \cos \theta=n \), prove that \( a^{2}+b^{2}=m^{2}+n^{2} \)
- If \( a \cos ^{3} \theta+3 a \cos \theta \sin ^{2} \theta=m, a \sin ^{3} \theta+3 a \cos ^{2} \theta \sin \theta=n \), prove that \( (m+n)^{2 / 3}+(m-n)^{2 / 3}=2 a^{2 / 3} \)
- If $\alpha$ and $\beta$ are zeroes of $x^2-4x+1$, then find the value of $\frac{1}{\alpha}+\frac{1}{\beta}-\alpha\beta$.
- If $\alpha+\beta=-2$ and $\alpha^3+\beta^3=-56$, then find the quadratic equation whose roots are $\alpha$ and $\beta$.
- Evaluate$\frac{sin^{2} \ 63\ +\ sin^{2} \ 27\ }{cos^{2} \ 17\ +\ cos^{2} \ 73}$
- If $\alpha,\ \beta$ are the roots of $x^2-px+q=0$, find the value of: $( i). \alpha^2+\beta^2\ ( ii). \alpha^3+\beta^3$.
- A ladder rests against a wall at an angle \( \alpha \) to the horizontal. Its foot is pulled away from the wall through a distance a , so that it slides a distance b down the wall making an angle \( \beta \) with the horizontal. Show that\[\frac{a}{b}=\frac{\cos \alpha-\cos \beta}{\sin \beta-\sin \alpha}\].
- $\alpha$ and $\beta$ are the zeros of the polynomial $x^2+4x+3$. Then write the polynomial whose zeros are $1+\frac{\alpha}{\beta}$ and $1+\frac{\beta}{\alpha}$.​
- If $\alpha,\ \beta$ are the zeroes of $f( x)=px^2-2x+3p$ and $\alpha +\beta=\alpha\beta$, then find the value of $p$.
- If $\alpha$ and $\beta$ are zeroes of $p( x)=kx^2+4x+4$, such that $\alpha^2+\beta^2=24$, find $k$.
- If \( \cos \theta=\frac{5}{13} \), find the value of \( \frac{\sin ^{2} \theta-\cos ^{2} \theta}{2 \sin \theta \cos \theta} \times \frac{1}{\tan ^{2} \theta} \)

Advertisements